Получение гексаферрита бария методом самовозгорания
Автор: Чернуха Александр Сергеевич, Зверева Анастасия Александровна, Зирник Глеб Михайлович, Пашнин Денис Рафаэлевич, Мустафина Карина Эльвировна, Беляев Игорь Евгеньевич, Дюкова Ольга Вадимовна, Артюкова Мария Владимировна, Малв Егор Викторович, Живулин Владимир Евгеньевич, Мосунова Татьяна Владимировна, Винник Денис Александрович
Журнал: Вестник Южно-Уральского государственного университета. Серия: Химия @vestnik-susu-chemistry
Рубрика: Физическая химия
Статья в выпуске: 3 т.13, 2021 года.
Бесплатный доступ
До настоящего времени керамический метод остается наиболее распространенным для получения сложных оксидов. В рамках данного подхода порошки оксидов и карбонатов требуемых металлов после тщательного перемешивания спекают на воздухе или в контролируемой атмосфере. Однако он имеет ряд недостатков. Наиболее значимый из них - необходимость достижения высоких температур синтеза, что приводит к увеличению размера частиц. Кроме того, в силу последнего обстоятельства, получаемые материалы обладают низким значением удельной поверхности, что делает невозможным их применение в качестве каталитических материалов. Вместе с тем, основные достоинства данного метода: дешевизна и доступность исходных реагентов, отсутствие необходимости использования растворителей, простота методики и широкий спектр получаемых материалов. Представлены результаты получения гексаферрита бария BaFe12O19 методом самовозгорания (self-combustion method). В ходе синтеза готовился раствор нитратов соответствующих металлов с лимонной кислотой. После нейтрализации и упаривания раствора, полученная масса нагревалась в муфельной печи для проведения процесса самовозгорания и удаления остаточного углерода. Финальное спекание проводилось в трубчатой печи с прецизионным регулятором температуры. Полученные образцы исследовались методами порошковой дифрактометрии, сканирующей электронной микроскопии и рентгеноспектрального микроанализа. Установлено, что метод самовозгорания позволяет получить гомогенный гексаферрит бария при более низкой температуре (на 200 °С) по сравнению с классическим керамическим методом. Для синтезированного BaFe12O19 параметры структуры составляют a = 5,891 Å, c = 23,215 Å, V = 697,6 Å3. Опробованный метод даёт возможность получения перспективных оксидных материалов с развитой поверхностью в более мягких условиях, а также проводить легирование оксидов легколетучими элементами. Ключевые слова: гексаферрит бария, BaFe12O19, метод самовозгорания.
Гексаферрит бария, bafe12o19, метод самовозгорания
Короткий адрес: https://sciup.org/147235334
IDR: 147235334 | DOI: 10.14529/chem210305
Список литературы Получение гексаферрита бария методом самовозгорания
- Gratzel M. Mesoporous Oxide Junctions and Nanostructured Solar Cells. Curr. Opin. Colloid Interface Sci., 1999, vol. 4, pp. 314–321. DOI: 10.1016/S1359-0294(99)90013-4.
- Serrà A., Philippe L., Perreault, Garcia-Segura S. Photocatalytic Treatment of Natural Waters. Reality or Hype? The Case of Cyanotoxins Remediation. Water Res., 2020, vol. 188. DOI: 10.1016/j.waters.2020.116543.
- Hadei M., Mesdaghinia A., Nabizadeh R., Mahvi A.Н., Rabbani S., Naddafi K. A Comprehensive Systematic Review of Photocatalytic Degradation of Pesticides Using Nano TiO2. Environ. Sci. Pollut. Res., 2021, vol. 28, no. 11, pp. 13055–13071. DOI:10.1007/s11356-021-12576-8.
- Medhi R., Marquez M.D., Lee T.R. Visible-Light-Active Doped Metal Oxide Nanoparticles: Review of their Synthesis, Properties, and Applications. ACS Appl. Nano Mater., 2020, vol. 3, no. 7. pp. 6156–6185. DOI: 10.1021/acsanm.0c01035.
- Pascariu P., Homocianu M. ZnO-based Ceramic Nanofibers: Preparation, Properties and Applications. Ceramics International. Elsevier Ltd, 2019, vol. 45, no. 9, pp. 11158–11173. DOI: 10.1016/j.ceramint.2019.03.113.
- Saad S.R., Mahmed N., Abdullah M.M.A.B., Sandu A.V. Self-Cleaning Technology in Fabric: A Review. IOP Conf. Ser. Mater. Sci. Eng., 2016, vol. 133, no. 1. P. 012028. DOI: 10.1088/1757-899X/133/1/0112028.
- Verbič A., Gorjanc M., Simončič B. Zinc Oxide for Functional Textile Coatings: Recent Advances. Coatings, 2019, vol. 9, no. 9. P. 550. DOI: 10.3390/coatings9090550.
- Montazer M., Amiri M.M. ZnO Nano Reactor on Textiles and Polymers : Ex-Situ and In-Situ Synthesis, Application and Characterization. J. Phys. Chem. B, 2014, vol. 118, no. 6, pp. 1453–1470. DOI: 10.1021/jp408532r.
- Narang S.B., Pubby K. Nickel Spinel Ferrites: A review. J. Magn. Magn. Mater., 2020, vol. 519. P. 167163. DOI: 10.1016/j.jmmm.2020.167163.
- de Julián Fernández C., Sangregorio C., de la Figuera J., Belec B., Makovec D., Quesada D. Progress and Prospects of Hard Hexaferrites for Permanent Magnet Applications. J. Phys. D. Appl. Phys., 2021, vol. 54, no. 15. P. 153001. DOI: 10.1088/1361-6463/abd272.
- Sharifianjazi F., Moradi M., Parvin N., Nemati A., Rad A. J., Sheysi N., Abouchenari A., Mo-hammadi A., Karbasi S., Ahmadi Z., Esmaeilkhanian A., Irani M., Pakseresht A., Sahmani S., Asl M.S. Magnetic CoFe2O4 Nanoparticles Doped with Metal Ions: A Review. Ceramics International. Elsevier Ltd, 2020, P. S0272-884220311469. DOI: 110.1016/j.ceramint.2020.04.202.
- Thakur P., Chahar D., Taneja S., Bhalla N., Thakur A. A Review on MnZn ferrites: Synthesis, Characterization and Applications. Ceramics International. Elsevier Ltd, 2020, vol. 46, no. 10, pp. 15740–15763. DOI: 10.1016/j.ceramnit.2020.03.287.
- Talaat A., Suraj M.V., Byerly K., Wang A., Wang Y., Leea J.K., Ohodnicki Jr P.R. Review on Soft Magnetic Metal and Inorganic Oxide Nanocomposites for Power Applications. J. Alloys Compd. Elsevier, 2021, vol. 870. P. 159500. DOI: 10.1016/j.jallcom.2021.159500.
- Houbi A., Zharmenov A.A., Atassi Y., Bagasharova Z.T., Mirzalieva S., Kadyrakunov K. Microwave Absorbing Properties of Ferrites and their Composites: A Review. J. Magn. Magn. Mater., 2021, vol. 529. P. 167839. DOI: 10.1016/j.jmmm.2021.167839.
- Chandel M, Singh V.P., Jasrotia R., Singha K., Kumar R. A Review on Structural, Electrical and Magnetic Properties of Y-type Hexaferrites Synthesized by Different Techniques for Antenna Applications and Microwave Absorbing Characteristic Materials. AIMS Mater. Sci., 2020, vol. 7, no. 3, рр. 244–268. DOI: 10.3934/matersci.2020.3.244.
- Srinivasan G., Zavislyak I.V., Popov M., Sreenivasulu G., Fetisov Y.K. Ferrite-Piezoelectric Heterostructures for Microwave and Millimeter Devices: Recent Advances and Future Possibilities. J. Japan Soc. Powder Powder Metall., 2014, vol. 61, pp. S25–S29. DOI: 10.2497/jspm.61.s25.
- Mallmann E.J.J., Sombra A.S.B., Goes J.C., Fechine P.B.A. Yttrium Iron Garnet: Properties and Applications Review. Solid State Phenom., 2013, vol. 202, pp. 65–96. DOI: 10.4028/www.scientific.net/ssp.202.65.
- Urdǎ A., Herraïz A., Rédey Á., Marcu I.-C. Co and Ni Ferrospinels as Catalysts for Propane Total Oxidation. Catal. Commun. Elsevier, 2009, vol. 10, no. 13, pp. 1651–1655. DOI: 10.1016/j.catcom.2009.05.002.
- Xu A., Yang M., Qiao R., Du H., Sun C. Activity and Leaching Features of Zinc-Aluminum Ferrites in Catalytic Wet Oxidation of Phenol. J. Hazard. Mater. Elsevier, 2007, vol. 147, no. 1–2, pp. 449–456. DOI: 10.1016/j.hazat.2007.01.026.
- Faungnawakij K., Tanaka Y., Shimoda N., Fukunaga T., Kikuchi R., Eguchi K. Hydrogen Production From Dimethyl Ether Steam Reforming Over Composite Catalysts of Copper Ferrite Spinel and Alumina. Appl. Catal. B Environ. Elsevier, 2007, vol. 74, no. 1–2, pp. 144–151. DOI: 10.1016/j.apcatb.2007.02.010.
- Ashok A., Kennedy L.J. Magnetically Separable Zinc Ferrite Nanocatalyst for an Effective Biodiesel Production from Waste Cooking Oil. Top. Catal. Springer US, 2019, vol. 149, no. 12, pp. 3525–3542. DOI:10.1007/s10562-019-02906-4.
- Dantas J., Leal E., Cornejo D.R., Costa A.C. F.M. Biodiesel Production Evaluating the Use and Reuse of Magnetic Nanocatalysts Ni0.5Zn0.5Fe2O4. Arab. J. Chem., 2018, vol. 13, no 1, pp. 3026–3042. DOI:10.1016/j.arabjc.2018.08.012.
- Zeng Z., Xu Y., Zhang Z., Gao Z., Luo M., Yin Z., Zhang С., Xu J., Huang B., Luo F., Du Ya., Yan C. Rare-Earth-Containing Perovskite Nanomaterials: Design, Synthesis, Properties and Applications. Soc. Chem. Rev., 2020, vol. 49, no. 4, pp. 1109–1143. DOI: 10.1039/c9cs00330d.
- Bayon A., de la Calle A., Ghose K.K., Page A., McNaughton R. Experimental, Computational and Thermodynamic Studies in Perovskites Metal Oxides for Thermochemical Fuel Production: A Review. Int. J. Hydrogen Energy. Elsevier Ltd., 2020, vol. 45, no. 23, pp. 12653–12679. DOI: 10.1016/j.ijhydene.2020.02.126.
- Khan R., Mehran M.T., Naqvi S.R., Khoja A.H., Mahmood K., Shahzad F., Hussain S. Role of Perovskites as a Bi-Functional Catalyst for Electrochemical Water Splitting: a Review. Int. J. Energy Res., 2020, vol. 44, no. 12, pp. 9714–9747. DOI: 10.1002/er.5635.
- Manos D., Miserli K., Konstantinou I. Perovskite and Spinel Catalysts for Sulfate Radical-Based Advanced Oxidation of Organic Pollutants in Water and Wastewater Systems. Catalysts, 2020, vol. 10, no. 11, р. 1299. DOI: 10.3390/catal10111299.
- Pavlova S.G., Balbashov A.M., Rybina L.N. Single Crystal Growth from the Melt and Magnetic Properties of Hexaferrites-Aluminates. J. Cryst. Growth., 2012, vol. 351, no. 1, pp. 161–164. DOI:10.1016/j.jcrysgro.2011.12.053.
- Vinnik D.A., Ustinov A.B., Zherebtsov D.A., Vitko V.V., Gudkova S.A., Zakharchuk I., Lähderant E., Niewa R. Structural and Millimeter-Wave Characterization of Flux Grown Al Substituted Barium Hexaferrite Single Crystals. Ceram. Int. Elsevier Ltd., 2015, vol. 41, no. 10, pp. 12728–12733. DOI: 10.1016/j.ceramint.2015.06.105.
- El-Sayed S.M., Meaz T.M., Amer M.A., El Shersaby H.A. Magnetic Behavior and Dielectric Properties of Aluminum Substituted M-type Barium Hexaferrite. Phys. B Condens. Matter., 2013, vol. 426, pp. 137–143. DOI: 10.1016/j.physb.2013.06.026.
- Sehar F., Anjum S., Mustafa Z., Atiq S. Co-existence of Ferroelectric and Ferromagnetic Properties of Bi+3 Substituted M-type Barium Hexaferrites. J. Supercond. Nov. Magn., 2020, vol. 33, no. 7, pp. 2073–2086. DOI: 10.1007/s10948-020-05452-y.
- Ahmed A., Alyabyeva L., Torgashev V., Prokhorov A.S., Vinnik D., Dressel M., Gorshunov B. Effect of Aluminium Substitution on Low Energy Electrodynamics of Barium-Lead M-type Hexagonal Ferrites. J. Phys. Conf. Ser., 2019, vol. 1389, P. 012044. DOI: 10.1088/1742-6596/1389/1/012044.
- Aisiyah M.C., Zainuri M., Ristiani D. Magnetic and Microwave Absorbing Properties of Zn-substituted Barium M-Hexaferrite in X-band Frequency Range. IOP Conf. Ser. Mater. Sci. Eng., 2019, vol. 496, p. 012024. DOI: 10.1088/1757-899x/496/1/012024.
- Xu Z., Jiang J., Zhang Q., Chen G., Zhou L., Li L. 3D Graphene Aerogel Composite of 1D-2D Nb2O5-g-C3N4 Heterojunction With Excellent Adsorption and Visible-light Photocatalytic Performance. J. Colloid Interface Sci. Academic Press Inc., 2019, vol. 563, pp. 131–138. DOI: 10.1016/j.jcis.2019.12.002.
- Huang J., Li D., Li R., Chen P., Zhang Q., Liu H., Lv W., Liu G., Feng Y. One-Step Synthesis of Phosphorus/Oxygen Co-doped g-C3N4/Anatase TiO2 Z-scheme Photocatalyst for Significantly Enhanced Visible-Light Photocatalysis Degradation of Enrofloxacin. J. Hazard. Mater.., 2019, vol. 386, P. 121634. DOI: 10.1016/j.jhazmat.2019.121634.
- Karthik P., Naveen Kumar T.R., Neppolian B. Redox Couple Mediated Charge Carrier Separation in g-C3N4/CuO Photocatalyst for Enhanced Photocatalytic H2 Production. Int. J. Hydrogen Energy. Elsevier Ltd, 2019, vol. 45, no. 13, pp. 7541–7551. DOI:10.1016/j.ijhydene.2019.06.045.
- Gao X., Yang B., Yao W., Wang Y., Zong R., Wang J., Li X., Jin W., Tao D. Enhanced Photocatalytic Activity of ZnO/g-C3N4 Composites by Regulating Stacked Thickness of g-C3N4 Nanosheets. Environ. Pollut. Elsevier Ltd, 2019, vol. 257. P. 113577. DOI:10.1016/j.envpol.2019.113577.
- Liu D., Chen D., Li N., Xu Q., Li H., He J., Lu J. ZIF-67-Derived 3D Hollow Mesoporous Crystalline Co3O4 Wrapped by 2D g-C3N4 Nanosheets for Photocatalytic Removal of Nitric Oxide. Small, 2019, vol. 15, no. 31. P. 1902291. DOI:10.1002/smll.201902291.
- Devi M., Das B., Barbhuiya M.H., Bhuyan B., Dhar S.S., Vadivel S. Fabrication of Nanostructured NiO/WO3 with Graphitic Carbon Nitride for Visible Light Driven Photocatalytic hyDroxylation of Benzene and Metronidazole Degradation. New J. Chem., 2019, vol. 43, no. 36, pp. 14616–14624. DOI:10.1039/c9nj02904d.
- Chen K., Zhang X.-M., Yang X.-F., Jiao M.-G., Zhou Z., Zhang M.-H., Wang D.-H., Bu X.-H. Electronic Structure of Heterojunction MoO2/g-C3N4 Catalyst for Oxidative Desulfurization. Appl. Catal. B. Environ, 2018, vol. 238, pp. 263–273. DOI:10.1016/j.apcatb.2018.07.037.
- Cobos M.A., de la Presa P., Llorente I., García-Escorial A., Hernando A., Jiménez J.A. Effect of Preparation Methods on Magnetic Properties of Stoichiometric Zinc Ferrite. J. Alloys Compd. Elsevier Ltd, 2020, vol. 849. P. 156353. DOI: 10.1016/j.jallcom.2020.156353.
- Patil S.B., Davari A.J., Patil D.R., Patil R.P. Microstructure and Magnetic Properties of Ni-Mg-Zn-Co Ferrites. Macromol. Symp., 2020, vol. 393, no. 1. P. 2000179. DOI: 10.1002/masy.202000179.
- Thakur P., Taneja S., Sindhu D., Lüders U., Sharma A., Ravelo B., Thakur A. Manganese Zinc Ferrites: a Short Review on Synthesis and Characterization. J. Supercond. Novel. Magn., 2020, vol. 33, no. 6, pp. 1569–1584. DOI: 10.1007/s10948-020-05489-z.
- Huang C.-C., Jiang A.-H., Liou. C.-H., Wang Y.-C., Lee C.-P., Hung T.-Y., Kuo M.-F. Cheng C.-H. Magnetic Property Enhancement of Cobalt-Free M-type Strontium Hexagonal Ferrites by CaCO3 and SiO2 Addition. Intermetallics. Elsevier Ltd, 2017, vol. 89, pp. 111–117. DOI:10.1016/j.intermet.2017.06.001.
- Kasenov B.K., Sagintaeva Z.I., Kasenova S.B., Davrenbekov S.Z., Abil’daeva A.Z. X-ray Powder Diffraction Study of Nanostructured Particles of Manganite Ferrites NdMIMnFeO5 (MI = Li, Na, K). J. Inorg. Chem., 2013, vol. 58, no. 8, pp. 976–979. DOI: 10.1134/s0036023613080111.
- Fan L., Zheng H., Zhou X., Zhang H., Wu Q., Zheng P., Zheng L., Zhang Y. A Comparative Study of Microstructure, Magnetic, and Electromagnetic Properties of Zn2W Hexaferrite Prepared by Sol–Gel and Solid-State Reaction Methods. J. Sol-Gel Sci. Technol. Springer US, 2020, vol. 96, no. 3, pp. 604–613. DOI: 10.1007/s10971-020-05364-2.
- Rekhila G., Trari M. Physical Properties of the Ferrites NiFe2−xMnxO4 (0 ≤ x ≤ 2) Prepared by Sol–Gel Method. J. Mater. Sci. Mater. Electron, 2021, vol. 32, no. 2, pp. 1897–1906. DOI: 10.1007/s10854-020-04958-4.
- Belous A., Tovstolytkin A., Fedorchuk O., Shlapa Yu., Solopan S., Khomenko B. Al-doped Yttrium Iron Garnets Y3AlFe4O12: Synthesis and Properties. J. Alloys Compd., 2021, vol. 856, pp. 158140. DOI:10.1016/j.jallcom.2020.158140.
- Kaykan L. Sijo A.K., Żywczak A., Mazurenko J., Bandura K. Tailoring of Structural and Magnetic Properties of Nanosized Lithium Ferrites Synthesized by Sol-Gel Self-Combustion Method. Appl. Nanosci. Springer International Publishing, 2020, vol. 10, no. 12, pp. 4577–4583. DOI: 10.1007/s13204-020-01413-y.
- Zhang H., Kajiyoshi K. Hydrothermal Synthesis and Size-Dependent Properties of Multiferroic Bismuth Ferrite Crystallites. J. Am. Ceram. Soc., 2010, vol. 93, no. 11, pp. 3842–3849. DOI:10.1111/j.1551-2916.2010.03953.x.
- Chen M., Fun R.H, Liu G.F., Wang X.A., Sun K. Magnetic Properties of Barium Ferrite Prepared by Hydrothermal Synthesis. Key Eng. Mater., 2015, vol. 655, pp. 178–181. DOI:10.4028/www.scientific.net/kem.655.178.
- Prabhu S., Geerthana M., Sohila S., Bhalerao G.M., Harish S., Navaneethan M., Hayakawa Y., Ramesh R. Preparation of Cr3+-Substituted NiFe2O4 Nanoparticles and its Microwave Absorption Properties. J. Supercond. Novel Magn., 2019, vol. 32, no. 5, pp. 1423–1429. DOI: 10.1007/s10948-018-4835-0.
- Fariñas J. C., Moreno R., Pérez A., García M.A., García-Hernández M., Salvador M.D., Borrell A. Microwave-assisted Solution Synthesis, Microwave Sintering and Magnetic Properties of Cobalt Ferrite. J. Eur. Ceram. Soc., 2018. vol. 38, no. 5, pp. 2360–2368. DOI: 10.1016/j.jeurceramsoc.2017.12.052.
- Tang H., Peng Z., Gu F., Ye L., Wang L., Zheng L., Tian W., Rao M., Li G., Jiang T. Preparation of Magnesium Aluminum Ferrite Spinel by Microwave Sintering. Book Series of the The Minerals, Metals & Materials, 2019, pp. 161–169. DOI:10.1007/978-3-030-05749-7_17.
- Ambika S., Gopinath S., Saravanan K., Sivakumar K., Sukantha T.A., Paramasivan P. Preparation and Characterization of Nanocopper Ferrite and its Green Catalytic Activity in Alcohol Oxidation Reaction. J. Supercond. Novel Magn., 2019, vol. 32, no. 4, pp. 903–910. DOI:10.1007/s10948-018-4715-7.
- Lagashetty A., Muttin V., Patil M.K., Ganiger S.K. Synthesis, Characterization and Studies of BaFe2O4/PMMA Nanocomposite. J. Polym. Bull., 2020, pp. 1–17. DOI:10.1007/s00289-020-03403-0.
- Del Toro R.S., Pinto-Castilla S., Cañizale E., Ávila E., Díaz Y., Gutiérrez B., Sifontes A.B. Synthesis of SrFe(Al)O3−δ–SrAl2O4 Nanocomposites Via Green Route. Nano-Structures & Nano-Object., 2020. vol. 22, pp. 100437. DOI:10.1016/j.nanoso.2020.100437.
- Shin H.S., Kwon S.-J. A Suggestion on the Standard X-ray Powder Diffraction Pattern of Barium Ferrite. Journal of Powder Diffraction, 1992, vol. 7, no. 4, pp. 212–214. DOI: 10.1017/S088571560001873X.
- Morris M.C., McMurdie, H.F., Evans E.H., Paretzkin B., Parker H.S., Panagiotopoulos N.C., Hubbard C. Standart X-ray Diffraction Powder Patterns: Section 18-data for 58 substances. Journal of National Bureau of Standarts, 2015, vol. 25–18, 122 p.
- Townes W.D., Fang J.H., Perrotta A.J. The Crystal Structure and Refinement of Ferrimagnetic Barium Ferrite, BaFe12O19. Book Series of the Zeitschrift für Krist., 1967, vol. 125, pp. 437–449.