Получение игольчатого кокса из нефтяного и угольного сырья

Автор: Обухова А. В., Кузнецова Л. И., Каменский Е. С., Кузнецов П. Н., Авид Б.

Журнал: Журнал Сибирского федерального университета. Серия: Техника и технологии @technologies-sfu

Рубрика: Исследования. Проектирование. Опыт эксплуатации

Статья в выпуске: 6 т.17, 2024 года.

Бесплатный доступ

Игольчатый кокс, углеродный продукт с уникальными физическими свойствами, используется для получения широкого спектра графитовых материалов для важнейших областей техники и технологии. Промышленное производство игольчатого кокса основано на замедленном коксовании полиароматического сырья, локализовано в ограниченном числе стран (в основном в Китае, США, Японии, Корее). В России потребности в игольчатом коксе для динамично развивающихся отраслей промышленности обеспечиваются исключительно посредством импорта. В статье рассмотрены химико-технологические основы формирования игольчатого кокса из нефтяного и угольного сырья, влияние компонентного состава сырья и параметров стадий карбонизации на его качество. Представлен краткий обзор методов получения игольчатого кокса, видов традиционного сырья, используемых для его получения. Приведены данные о способах модифицирования традиционного сырья и возможности использования альтернативных источников, что позволит расширить сырьевую базу для производства игольчатого кокса и повысить его качество.

Еще

Замедленное коксование, игольчатый кокс, нефтяной кокс, угольный кокс, ароматические вещества, мезофаза

Короткий адрес: https://sciup.org/146282906

IDR: 146282906

Список литературы Получение игольчатого кокса из нефтяного и угольного сырья

  • Ахметов М. М. К вопросу о механизме формирования структуры игольчатых коксов. Научно-технический журнал «Мир нефтепродуктов». 2015. 4. 29–35. [Akhmetov M. M. On the mechanism of formation of the structure of needle cokes. Scientific and technical journal “World of petroleum products”. 2015. 4. 29–35. (in Rus.)]
  • Zhang Z., Chen K., Liu D., Lou B., Li M., Guo S., Yu R., Wu B., Gong X., Li G. Comparative study of the carbonization process and structural evolution during needle coke preparation from petroleum and coal feedstock. Journal of Analytical and Applied Pyrolysis, 2021, 156, 105097
  • Cheng J., Lu Z., Zhao X., Chen X., Zhu Y., Chu H. Electrochemical performance of porous carbons derived from needle coke with different textures for supercapacitor electrode materials. Carbon Lett., 2021, 31, 57–65
  • Wei F., He X. J., Zhang H. F., Liu Z. D., Xiao N., Qiu J. S. Crumpled carbon nanonets derived from anthracene oil for high energy density supercapacitor. Journal of Power Sources, 2019, 428, 8–12
  • Chen G., Jin Y., Zhang Z., Zhao W., Su W., Qing T., Chen J., Li Y. A green phenolic resin/needle coke scrap-based carbon/carbon composite as anode material for lithium-ion batteries. Ionics (Kiel), 2021, 27, 5079–5087
  • Global Needle Coke Industry Trends Analysis Report 2024, Forecast to 2032 (Broken Down by Type, End User, Regional Analysis, and Competitive Landscape) [Electronic resourse] – Access: https://www.marketgrowthreports.com/global-needle-coke-industry‑25826630
  • Рудко В. А., Габдулхаков Р. Р., Пягай И. Н. Научно-техническое обоснование возможности организации производства игольчатого кокса в России. Записки Горного института, 2023, 263, 795–809 [Rudko V. A., Gabdulkhakov R. R., Pyagai I. N. Scientific and technical substantiation of the possibility of organizing the production of needle coke in Russian. Journal of Mining Institute, 2023, 263, 795–809 (in Rus.)]
  • Zhao D., Zhao H., Ye J., Song W., Miao S., Shen H. Oxygen functionalization boosted sodium adsorption-intercalation in coal based needle coke. Electrochim Acta., 2020, 329, 135127
  • Sawarkar A. N., Pandit A. B., Samant S. D., Joshi J. B. Petroleum residue upgrading via delayed coking: a review. Canadian Journal of Chemical Engineering, 2007, 85, 1–24
  • Needle Coke Market. Analysis of size and share market – growth trends and forecast (2024–2029) [Electronic resourse] – Access: https://www.mordorintelligence.com/ru/industry-reports/needle-coke-market
  • Габдулхаков Р. Р., Рудко В. А., Ефимов И. И., Спекторук А. А. Оценка качества игольчатого кокса для производства графитированных электродов металлургических печей. Цветные металлы, 2022, 7, 46–56 [Gabdulkhakov R. R., Rudko V. А., Efimov I. I., Spectoruk A. A. Quality assessment of needle coke used in the production of graphiteelectrodes for metallurgical furnaces. Tsvetnye Metally., 2022, 7, 46–56 (in Rus.)]
  • Zaporin V. P., Valyavin G. G., Rizvanov I. V., Akhmetov A. F. Decant-oil coking gasoils for production of industrial carbon. Chemistry and Technology of Fuels and Oils, 2007, 43, 326–329
  • Рудко Н. К., Кондрашева, Романовский С. Ю., Кондрашев Д. О. Изучение углеводородного и микроэлементного состава и свойств сырья и продуктов процесса замедленного коксования. Известия СПбГТИ(ТУ), 2017, 38(64), 69–75. [Rudko N. K. Kondrasheva, S. Yu. Romanovsky, D. O. Kondrashev. Study of hydrocarbon and microelement composition and properties of raw materials and products of the delayed coking process. Bulletin of SPbGTI(TU), 2017, 38(64), 69–75 (in Rus.)]
  • Созинов С. А., Попова А. Н., Лырщиков С. Ю., Исмагилов З. Р. Термолиз α2 –фракции каменноугольного пека: характеристика структуры кокса. Химия в интересах устойчивого развития. 2022, 30, 553–558 [Sozinov S. A., Popova A. N., LyrshchikovS.Yu., Ismagilov Z. R. Thermolysis of the α2 fraction of coal pitch: characteristics of the coke structure. Chemistry for sustainable development. 2022, 30, 553–558 (in Rus.)]
  • Бородин Е. В., Ведерников О. С., Головачев В. А., Клейменов А. В., Лаврова А. С., Петин А. А. Новый способ получения нефтяного игольчатого кокса с термополиконденсацией сырья. Нефте Газо Химия, 2023, 2, 5–7 [Borodin E. V., Vedernikov O. S., Golovachev V. A., Kleymenov A. V., Lavrova A. S., Petin A. A. New method for obtaining petroleum needle coke with raw material thermopolycondensation. Oil & Gas Chemistry, 2023, 2, 5–7 (in Rus.)]
  • Валявин Г. Г., Запорин В. П., Габбасов Р. Г., Калиммулин Т. И. Процесс замедленного коксования и производство нефтяных коксов, специализированных по применению. Территория Нефтегаз, 2011, 8, 44–49 [Valyavin G. G., Zaporin V. P., Gabbasov R. G., Kalimmulin T. I. The process of delayed coking and the production of petroleum cokes specialized in application. Territory of Neftegaz, 2011, 8, 44–49 (in Rus.)]
  • The project of a plant for the production of oil needle cokes (Republic of Bashkortostan). [Electronic resourse] – Access: https://www.fbacs.com/images/Игольч.КОКС%20кратко%202019 %20Ишимбай%20(В‑2).pdf
  • Brooks J. D., Taylor G. H. Formation of graphitizing carbons from liquid phase. Nature, 1965, 206, 697–699
  • Weinberg V. A., White J. L., Yen T. F. Solvent fractionation of petroleum pitch for mesophase formation. Fuel, 1983, 62, 1503–1509
  • Gabdulkhakov R. R., Rudko V. A., Pyagay I. N. Methods for modifying needle coke raw materials by introducing additives of various origin (review). Fuel, 2022, 310, 122265
  • Mochida I., Oyama T., Korai Y. Formation scheme of needle coke from FCC‑decant oil. Carbon, 1988, 26, 49–55
  • Skripchenko G. B. Results of basic investigation carried out by institute for solid fossil fuels on development of scientific foundations of the technology of coal graphite materials. Solid Fuel Chemistry, 2005, 39, 1, 54–67
  • Лаврова А. С. Исследование процесса получения игольчатого кокса из нефтяного сырья, дис.канд. техн. наук. Санкт-Петербург, 2024, 117 [Lavrova A. S. Investigation of the process of obtaining needle coke from petroleum raw materials, Thesis cand.of tech. Sci. Saint-Petersburg, 2024, 117 (in Rus.)]
  • Wang M., Yang B., Yu T., Yu X., Rizwan M., Yuan X., Niecand X., Zhou X. Research progress in the preparation of mesophase pitch from fluid catalytic cracking slurry. RSC Adv., 2023, 13, 18676–18689
  • Mondal S., Yadav A., Pandey V., Sugumaran V., Bagai R., Kumar R. Dissecting the cohesiveness among aromatics, saturates and structural features of aromatics towards needle coke generation in DCU from clarified oil by analytical techniques. Fuel, 2021, 304, 121459
  • Zhang Z., Du H., Guo S., Lou B., Yu R., Gong X. Probing the effect of molecular structure and compositions in extracted oil on the characteristics of needle coke. Fuel, 2021, 301, 120984
  • Halim H. P., Im J. S., Lee C. W. Preparation of needle coke from petroleum byproducts. Carbon Lett, 2013, 14, 152–61
  • . Eser S., Jenkins R. G. Carbonization of petroleum feedstocks and mesophase development. Carbon, 1989, 27, 877–887
  • Liu D., Lou B., Li M., Qu F., Yu R., Yang Y. Study on the preparation of mesophase pitch from modified naphthenic vacuum residue by direct thermal treatment. Energy Fuels, 2016, 30, 4609–4618
  • Anchita J. HYDRO-IMP Technology for upgrading of heavy petroleum. J Min Inst., 2017, 224, 229–234
  • Guo A., Lin X., Liu D., Zhang X., Wang Z. Investigation on shot-coke-forming propensity and controlling of coke morphology during heavy oil coking. Fuel Process Technol, 2012, 104, 332–342
  • Eser S., Jenkins R. G. Carbonization of petroleum feedstocks II: Chemical constitution of feedstock asphaltenes and mesophase development. Carbon NY, 1989, 27, 889–897
  • Jiao S., Guo A., Wang F., Chen K., Liu H., Ibrahim U-K. Effects of olefins on mesophase pitch prepared from fluidized catalytic cracking decant oil. Fuel, 2020, 262, 116671
  • Mochida I., Oyama T., Korai Y., Fei Y. Q. Study of carbonization using a tube bomb: evaluation of lump needle coke, carbonization mechanism and optimization. Fuel, 1988, 67, 9, 1171–1181
  • Fernandez-García L., Alvarez P., Perez-Mas A.M., Blanco C., Santamaría R., Menendez R. Role of quinoline insoluble particles during the processing of coal tars to produce graphene materials. Fuel, 2017, 206, 99–106
  • Cao Q., Xie X., Li J., Dong J., Jin L. A novel method for removing quinolone insolubles and ash in coal tar pitch using electrostatic fields. Fuel, 2012, 96, 314–318
  • Moriyama R., Hayashi J‑i., Chiba T. Effects of quinoline-insoluble particles on the elemental processes of mesophase sphere formation. Carbon NY, 2004, 42, 2443–2449
  • Mochida I., Korai Y., Fei Y. Q., Oyama T. Optimum carbonization conditions needed to form needle coke. Oil Gas J, 1988, 86, 18, 73–76
  • Didchenko R., Lewis I. C. Method of forming an electrode from a sulfur containing decant oil feedstock. US Patent US 5167796 A (1992). n.d.
  • Lin C., Wang J., Chen S., Wang Z., Liu H., Chen K. Thermal treatment of fluid catalytic cracking slurry oil: determination of the thermal stability and its correlation with the quality of derived cokes. J Anal Appl Pyrolysis, 2018, 135, 406–14
  • Jiao S., Guo A., Wang F., Yu Y., Biney B. W., Liu H. Sequential pretreatments of an FCC slurry oil sample for preparation of feedstocks for high-value solid carbon materials. Fuel, 2021, 285, 119169
  • Zhang Z., Du H., Guo S., Chen Z., Wen F., Shi N. The effect of heat pretreatment of heavy oil on the pyrolysis performance and structural evolution of needle coke. J Anal Appl Pyrolysis, 2021, 157, 10517
  • Eser S., Derbyshire F. J., Karsner G. G. Development of coke texture by thermal pretreatment of petroleum residua. Fuel, 1989, 68, 9, 1146–1151
  • Zhu Y., Zhao X., Gao L., Lai S., Lv J. Study on the Pyrolysis Characteristic and the Microstructure of the Pyrolysis Products of β Resins from Different Coal Tar Pitch. Journal Chem Soc Pakistan, 2018, 40, 2, 343–353
  • Samano V., Rana M. S., Ancheyta J. An easy approach based on textural properties to evaluate catalyst deactivation during heavy oil hydrotreating. Catal Commun., 2020, 133, 105823
  • Хайрудинов И. Р., Судтанов Ф. М., Теляшев Э. Г. Современные процессы сольвентной деасфальтизации нефтяных остатков. Уфа: Издательство ГУП ИНХП РБ, 2011. 208. [Khairudinov I. R., Sudtanov F. M., Telyashev E. G. Modern processes of solvent deasphalting of oil residues. Ufa: Publishing house of GUP INHP RB, 2011. 208].
  • Cheng X., Zha Q., Li X., Yang X. Modified characteristics of mesophase pitch prepared from coal tar pitch by adding waste polystyrene. Fuel Process Technol., 2008, 89, 12, 1436–1441
  • Machnikowski J., Machnikowska H., Brzozowska T., Zieli´nski J. Mesophase development in coal-tar pitch modified with various polymers. J Anal Appl Pyrolysis, 2002, 65, 2, 147–160.
  • Li M., Liu D., Lou B., Hou X., Chen P. Relationship between Structural Modification of Aromatic-Rich Fraction from Heavy Oil and the Development of Mesophase Microstructure in Thermal Polymerization Process. Energy Fuels, 2016, 30, 10, 8177–8184
  • Cao Q., Guo L., Dong Y., Xie X., Jin L.-E. Autocatalytic modification of coal tar pitch using benzoylchloride and its effect on the structure of char. Fuel Process Technol., 2015, 129, 61–66
  • Kumar S, Srivastava M. Catalyzing mesophase formation by transition metals. J Anal Appl Pyrolysis., 2015, 112, 192–200
  • Zhu Y., Zhao C., Xu Y., Hu C., Zhao X. Preparation and Characterization of Coal Pitch-Based Needle Coke (Part I): The Effects of Aromatic Index (f a) in Refined Coal Pitch. Energy Fuels, 2019, 33, 3456–3464
  • Alcántara R., Lavela P., Ortiz G. F., Tirado J. L., Stoyanova R., Zhecheva E. Modification of Petroleum Coke for Lithium-Ion Batteries by Heat-Treatment with Iron Oxide. J Electrochem Soc., 2004, 151, 12, A2113
  • Bazhin V. Y. Structural modification of petroleum needle coke by adding lithium on calcining. Coke Chem., 2015, 58, 4, 138–142
  • Mochida I., Fei Y. Q., Korai Y., Oishi T. Co-carbonization of ethylene tar pitch and coal tar pitch to form needle coke. Fuel, 1990, 69, 6, 672–677
  • Mochida I., Korai Y., Oyama T., Nesumi Y., Todo Y. Carbonization in the tube bomb leading to needle coke: I. Cocarbonization of a petroleum vacuum residue and a FCC‑decant oil into better needle coke. Carbon NY, 1989, 27, 3, 359–365
  • Kapustin V. M., Glagoleva V. F. Physicochemical aspects of petroleum coke formation (review). Petroleum Chemistry, 2016, 56, 1, 1–9
  • Капустин В. М. Гуреев А. А. Технология переработки нефти. Ч. 2. – Деструктивные процессы. М.: Колос С, 2007. 334 [Kapustin V. M., Gureev A. A. Oil refining technology. Part 2. Destructive processes. Moscow. Kolos S, 2007. 334 (in Rus.)]
  • Сюняев З. И. Производство, облагораживание и применение нефтяного кокса. М.: Химия, 1973. 296 [Sunyaev Z. I. Production, refining and application of petroleum coke. Moscow. Chemistry, 1973. 296 (in Rus.)]
  • Хайрудинов И. Р., Тихонов А. А., Ахметов М. М. Перспектива расширения сырьевой базы для получения игольчатого кокса. Башкирский химический журнал, 2011, 18, 3, 103–111 [Khairudinov I. R., Tikhonov A. A., Akhmetov M. M. The prospect of expanding the raw material base for the production of needle coke. Bashkir Chemical Journal, 2011, 18, 3, 103–111 (in Rus.)]
  • Теляшев Э. Г., Хайрудинов И. Р., Ахметов М. М. Нефтяной кокс в России – перспективные технологии. Территория Нефтегаз, 2006, 4, 66–71 [Telyashev E. G., Khairudinov I. R., Akhmetov M. M. Petroleum coke in Russia – promising technologies. Territory of Neftegaz, 2006, 4, 66–71 (in Rus.)]
  • Запорин В. П., Сухов С. В., Старухин Д. А. Способ получения игольчатого кокса замедленным коксованием. Патент России № 2660008, опубл. 04.07.2018. Бюл. № 19 [Zaporin V. P., Sukhov S. V., Starukhin D. A. Method for producing needle coke by delayed coking. Russian Patent No. 2660008, published 04.07.2018. Bulletin No. 19]
  • Cheng X., Li G., Peng Y., Song S. et al. Production of needle coke from coal liquefaction residues. Chemistry Technology of Fuels and oils. 2012. 5. 11–14.
  • Павлович О. Н. Состав, свойства и перспективы переработки каменноугольной смолы. ГОУ ВПО УГТУ–УПИ, Учебное издание 2006, Екатеринбург. [Pavlovich O. N. Composition, properties and prospects for processing coal tar. State Educational Institution of Higher Professional Education USTU-UPI, Textbook publication 2006, Yekaterinburg (in Rus.)]
  • Blumer G.-P., Collin G., Hoke H. Tar and Pitch. Industrial Carbon and Graphite Materials: Raw Materials, Production and Applications. 2021, 1, 172–210.
  • Zhang Y., Liu X., Tian M., Zhu Y., Hua C., Zhao X. Generation and characterization of coal-based needle coke produced by the co-carbonization of coal liquefaction pitch and anthracene oil. RSC Adv, 2022, 12, 25860–25871
  • Mochida I., Fei YQ., Oyama T., Korai Y., Fujitsu H. Carbonization of coal-tar pitch coke in a tube bomb into lump needle. Journal of materials science, 1987, 22, 3989–3994
  • Krebs V., Eliilaoui M., Mareche J. F., Bertau G. R. Carbonization of coal-tar pitch under controlled atmosphere-part I: effect of temperature and pressure on the structural evolution of the formed green coke. Carbon, 1995, 33, 5, 645–651
  • Kuznetsov P. N., Kuznetsova L. I., Buryukin F. A., Marakushina E. N., Frizorger V. K. Methods for the preparation of coal-tar pitch. Solid Fuel Chem, 2015, 49, 213–225
  • Rahman M., Pudasainee D., Gupta R. Review on chemical upgrading of coal: Production processes, potential applications and recent developments. Fuel Process Technol, 2017, 158, 35–56
  • Hamaguchi M., Okuyama N., Shishido T., Sakai K., Komatsu N., Kikuchi N., Inoue T., Koide J., Kasahara H. Prebaked anode from coal extract (3) – carbonization properties of Hypercoal and its blends with binder pitch. In book: Light Metals. Springer, Cham. 2012, 1219–1221
  • Koyano K., Takanohashi T., Saito I. Estimation of the extraction yield of coals by a simple analysis. Energy Fuels, 2011, 25, 6, 2565–2571
  • Andrews R. J., Rantell T., Jacques D., Hower J. C., Gardner J. S., Amick M. Mild coal extraction for the production of anode coke from Blue Gem coal. Fuel, 2010, 89, 9, 2640–2647
  • Craddock J. D., Rantell T. D., Hower J. C., Whitlow D. T., Wiseman J., Weisenberger M. C. Anode coke from coal – A low cost approach. Fuel, 2017, 187, 229–241
  • Kuznetsov P. N., Kamenskiy E. S., Kuznetsova L. I. Solvolysis of bituminous coal in coal – and petroleum derived commercial solvents. ACS Omega, 2020, 5, 24, 14384–14393
  • Kuznetsov P.N, Kamenskiy E.S, Kuznetsova L.I Comparative study of the properties of the coal extractive and commercial pitches. Energy Fuels, 2017, 31, 5402–5410
  • Kuznetsov P. N., Safin V. A., Avid B., Kuznetsova L. I. et al. Thermal dissolution of coals of the metamorphism series in the anthracene fraction of coking tar: an analysis of correlations with the chemical and technological properties of coals. Solid Fuel Chemistry, 2021, 55, 69–77
  • Kuznetsov P. N., Ismagilov Z. R., Kuznetsova L. I., Avid В. et al. The composition and properties of soluble products from the coal thermosolvolysis with hydrocarbon residues and blends as solvents. Eurasian Chemico-Technological Journal, 2022, 24, 183–190
  • Kuznetsov P. N., Avid B., Kuznetsova L. I., Obukhova A. V. Alternative anode binders for aluminum electrolysis. Tsvetnye Metally, 2023, 6, 39–45
Еще
Статья научная