Получение монокристаллов гексаферрита бария свинца из раствора

Бесплатный доступ

Представлены результаты проведенного исследования возможности получения монокристаллических структур гексагонального феррита бария свинца из высокотемпературного раствора на основе оксида свинца методом спонтанной кристаллизации на воздухе. Для проведения экспериментов использовали резистивную печь в прецизионных ПИД регулятором температуры. Выращенные монокристаллы состава Ba1-xPbxFe12O19 при х = 0,2; 0,45; 0,8 имели характерную гексагональную огранку, размер до 3 мм. Полученные образцы исследовали с помощью растрового электронного микроскопа. Проведен также рентгенофазовый анализ полученных образцов, рассчитаны параметры ячейки. Образцы исследованы с помощью дифференциальной сканирующей калориметрии. Проведена оценка влияния замещения свинцом бария на структуру и свойства материала. Для состава Ba0,2Pb0,8Fe12O19 параметры решетки равны: a = 5,8917(12) Å, c = 23,173(3) Å, V = 696,60(19) Å3. Влияния замещения бария свинцом на свойства матрицы гексаферрита бария незначительны, что позволяет применять данную методику для получения частично замещенных по железу монокристаллических структур на основе гексаферрита бария свинца.

Еще

Феррит бария свинца, монокристаллы, магнитные материалы

Короткий адрес: https://sciup.org/147157002

IDR: 147157002   |   DOI: 10.14529/met160101

Текст научной статьи Получение монокристаллов гексаферрита бария свинца из раствора

Первый простейший вид феррита – магнетит (магнитный железняк) известен человечеству более 2500 лет. В середине XIX века П. Лист определил химический состав магнитных окислов – Ме О ( Ме – Mg, Mn, Zn, Ni, Cu) и Fe2O3. М.Т. Вейс измерил магнитные свойства магнетита: определил величину магнитного насыщения и температуры точки Кюри. В начале XX века Гильперт зарегистрировал первый объект интеллектуальной собственности – патент – на применение этих материалов для высокочастотных сердечников [1].

К настоящему времени известен ряд ферримагнитных структур: шпинели, гексагональные ферриты (магнетоплюмбиты), гранаты, перовскиты (ортоферриты). В таких структурах анионом является кислород. При описании их кристаллической решетки можно использовать принцип плотнейшей упаковки анионов, так как размеры кислорода в большинстве случаев значительно больше катионов. Анионы могут образовывать плотнейшую упаковку по одному из возможных типов. Катионы располагаются в образованных анионами пустотах [2].

Ферриты со структурой шпинели. Формула шпинели в общем виде имеет вид Me Fe 2 O 4 (где Ме – это Co2+, Fe2+, Ni2+, Zn2+, Mg2+, Mn2+ или комбинация Li+ + Fe3+ в равных атомных долях. Эти феррита кристаллизуются в кубической кристаллической решетке, пространственная группа Fd3m.

Ферриты со структурой граната. Формула ферритов с кристаллической решеткой, изотропной гранату Сa 3 Fe 2 (SiO 4 ) 3 или 3СaO·Fe 2 O 3 ·3SiO 2 , имеет вид Me 3 Fe 2 (FeO 4 ) 3 , где Ме – ион иттрия 3+ или одного из лантаноидов. Ферриты со структурой граната имеют кубическую кристаллическую решетку, пространственную группу Ia3d.

Ферриты со структурой перовскита. Формула этого типа ферритов R FeO3, где R – РЗЭ. Их также называют ортоферритами. Они имеют ромбическую структуру типа искаженной структуры минерала перовскита CaTiO 3 . Пространственная группа Pcmn. Структура ферритов типа перовскита, как и другие ферриты других структур, позволяет создавать изоморфные замещения в достаточно широких диапазонах концентраций. Ортоферриты – антиферромагнетики и только при очень низких температурах (несколько градусов К и ниже) становятся ферримагнетиками.

Ферриты со структурой магнетоплюмбита. Природный магнетоплюмбит имеет формулу PbFe7,5Mn3,5Al0,5Ti0,5O19. Структуру такого типа имеет только один гексагональный феррит – гексаферрит бария/стронция, химическая формула которого в общем виде имеет вид Ме Fe 12 O 19 , где Ме – Ba, Sr. Ферриты со структурой магнетоплюмбита имеют гексагональную кристаллическую решетку, пространственную группу группа Р63/mmс.

Гексагональные ферриты были открыты в 50-х годах XX века. Интерес к этим материалам остает-

Таблица 1

Состав исходной шихты

Состав, ат. %

Состав, мас. %

BaCO 3

Fe 2 O 3

PbO

BaCO 3

Fe 2 O 3

PbO

1

5,714

34,286

60

5,640

27,383

66,977

2

4,286

25,714

70

4,110

19,957

75,933

3

2,857

17,143

80

2,665

12,939

84,396

Таблица 2

Данные о структуре и свойствах образцов Ba 1– x Pb x FeO 19

x

a

c

V /ų

T C /°C

[40]

0

5,8929(4)

23,1943(1)

697,54(7)

455

1

0,23

5,8962(4)

23,1927(1)

698,28(6)

448

2

0,44

5,8948(3)

23,1780(8)

697,51(4)

449

3

0,80

5,8917(12)

23,173(3)

696,60(19)

451

Список литературы Получение монокристаллов гексаферрита бария свинца из раствора

  • Ситидзе Ю., Сато Х. Ферриты. М.: Мир, 1964. 408 с.
  • Журавлев Г.И. Химия и технология ферритов. Л.: Химия, 1970. 193 с.
  • Chen D., Liu Y., Li Y., Yang K., Zhang H. Microstructure and Magnetic Properties of Al-Doped Barium Ferrite With Sodium Citrate as Chelate Agent. Journal of Magnetism and Magnetic Materials, 2013, vol. 337, pp. 65-69. DOI: DOI: 10.1016/j.jmmm.2013.02.036
  • Dhage V.N., Mane M.L., Keche A.P., Birajdar C.T., Jadhav K.M. Structural and Magnetic Behaviour of Aluminium Doped Barium Hexaferrite Nanoparticles Synthesized by Solution Combustion Technique. Physica B, 2011, vol. 406, pp. 789-793. DOI: DOI: 10.1016/j.physb.2010.11.094
  • Harward I., Nie Y., Chen D., Baptist J., Shaw M.J., Liskova E.J., Visnovsky S., Siroky P., Lesnak M., Pistora J., Celinski Z. Physical Properties of Al Doped Ba Hexagonal Ferrite Thin Films. Journal of Applied Physics, 2013, no. 113, 043903. DOI: DOI: 10.1063/1.4788699
  • Pieper M.W., Morel A., Kools F. NMR Analysis of La+Co Doped M-Type Ferrites, Journal of Magnetism and Magnetic Materials, 2002, vol. 242-245, pp. 1408-1410. DOI: DOI: 10.1016/S0304-8853(01)00963-5
  • Marino-Castellanos P.A., Anglada-Rivera J., Cruz-Fuentes A., Lora-Serrano R. Magnetic and Microstructural Properties of the Ti4+-Doped Barium Hexaferrite. Journal of Magnetism and Magnetic Materials, 2004, no. 280, pp. 214-220. DOI: DOI: 10.1016/j.jmmm.2004.03.015
  • Zhang H., Liu Zh., Ma Ch., Yao X., Zhang L., Wu M. Preparation and Microwave Properties of Co-and Ti-Doped Barium Ferrite by Citrate Sol-Gel Process. Materials Chemistry and Physics, 2003, vol. 80, pp. 129-134. DOI: DOI: 10.1016/S0254-0584(02)00457-1
  • Grusková A., Sláma J., Dosoudil R., Kevická D., Jančárik V., Tóth I. Influence of Co-Ti Substitution on Coercivity in Ba Ferrites. Journal of Magnetism and Magnetic Materials, 2002, vol. 242-245, pp. 423-425. DOI: DOI: 10.1016/S0304-8853(01)01139-8
  • Tsutaoka T., Koga N. Magnetic Phase Transitions in Substituted Barium Ferrites BaFe12-x(Ti0.5Co0.5)xO19 (x = 0-5). Journal of Magnetism and Magnetic Materials, 2013, vol. 325, pp. 36-41. DOI: DOI: 10.1016/j.jmmm.2012.07.050
  • Teh G.B., Saravanan N. A Study of Magnetoplumbite-Type (M-T) Cobalt-Titanium-Substituted Barium Ferrite, BaTixCoxFe12-2xO19 (x = 1-6). Materials Chemistry and Physics, 2007, vol. 105, pp. 253-259 DOI: 10.1016/j.matchemphys.2007.04.054
  • Sláma J. Grusková A., Pápanová M., Kevická D., Jančárik V., Dosoudil R., Mendoza-Suárez G., González-Angeles A. Properties of M-type Barium Ferrite Doped by Selected Ions. Journal of Electrical Engineering, 2005, vol. 56, no. 1-2, pp. 21-25.
  • Marino-Castellanos P.A., Moreno-Borges A.C., Oronzo-Melgar G., Garcia J.A., Govea-Alcade E. Structural and Magnetic Study of the Ti4+-Doped Barium Hexaferrite Ceramic Samples: Theoretical and Experimental Results. Physica B., 2011, vol. 406, pp. 3130-3136 DOI: 10.1016/j.physb.2011.03.084
  • Mallick K.K., Stepherd P., Green R.J. Magnetic Properties of Cobalt Substituted M-Type Barium Hexa-ferrite Prepared by Co-Precipitation. Journal of Magnetism and Magnetic Materials, 2007, vol. 312, pp. 418-429 DOI: 10.1016/j.jmmm.2006.11.130
  • Rane M.V., Bahadur D., Kulkarni S.D., Date S.K. Magnetic Properties of NiZr Substituted Barium Ferrite. Journal of Magnetism and Magnetic Materials, 1999, vol. 195, pp. 256-260 DOI: 10.1016/S0304-8853(99)00041-4
  • Vinnik D.A., Ustinov A.B., Zherebtsov D.A., Vitko V.V., Gudkova S.A., Zakharchuk I., Lähderanta E., Niewa R. Structural and Millimeter-Wave Characterization of Flux Grown Al Substituted Barium Hexaferrite Single Crystals. Ceramics International, 2015. no. 41 (10), pp. 12728-12733 DOI: 10.1016/j.ceramint.2015.06.105
  • Geok B.T., Nagalingam S., Jefferson D. A. Preparation and Studies of Co(II) and Co(III)-Substituted Barium Ferrite Prepared by Sol-Gel Method. Materials Chemistry and Physics, 2007, no. 101, pp. 158-162 DOI: 10.1016/j.matchemphys.2006.03.008
  • Zhang W., Peng B., Zhang W., Zhou S., Schmidt H. Ultra Large Coercivity in Barium Ferrite Thin Films Prepared by Magnetron Sputtering. Journal of Magnetism and Magnetic Materials, 2010, no. 322, pp. 1859-1862 DOI: 10.1016/j.jmmm.2009.12.041
  • Xu H., Zhang W., Peng B., Zhang W. Properties of Barium Hexa-Ferrite Thin Films Dependent on Sputtering Pressure. Applied Surface Science, 2011, no. 257, pp. 2689-2693 DOI: 10.1016/j.apsusc.2010.10.045
  • Ustinov A.B., Tatarenko A. S., Srinivasan G., Balbashov A. M. Al Substituted Ba-Hexaferrite Single-Crystal Films for Millimeter-Wave Devices. Journal of Applied Physics, 2009, no. 105, pp. 105-108 DOI: 10.1063/1.3067759
  • Ustinov A.B., Srinivasan G. Subterahertz Excitations and Magnetoelectric Effects in Hexaferrite-Piezoelectric Bilayers. Applied Physics Letters, 2008, no. 93, 142503 DOI: 10.1063/1.2996585
  • Popov M., Zavislyak I., Ustinov A., Srinivasan G. Sub-Terahertz Magnetic and Dielectric Excitations in Hexagonal Ferrites. IEEE Transactions on Magnetics, 2011, no. 47, pp. 289-294 DOI: 10.1109/TMAG.2010.2091677
  • Popov M.A., Zavislyak I.V., Srinivasan G. Sub-THz Dielectric Resonance in Single Crystal Yttrium Iron Garnet and Magnetic Field Tuning of the Modes. Journal of Applied Physics, 2011, vol. 110, 024112 DOI: 10.1063/1.3607873
  • Song Y.-Y., Ordóñez-Romero C. L., Wu. M. Millimeter Wave Notch Filters Based on Ferromagnetic Resonance in Hexagonal Barium Ferrites. Applied Physics Letters, 2009, no. 95, 142506 DOI: 10.1063/1.3246170
  • Harris V.G. Modern Microwave Ferrites. IEEE Transactions on Magnetics, 2012, vol. 48, pp. 1075-1104 DOI: 10.1109/TMAG.2011.2180732
  • Wang S.G., Yoon S.D., Vittoria C. Microwave and Magnetic Properties of Double-Sided Hexaferrite Films on (111) Magnesium Oxide Substrates. Journal of Applied Physics, 2002, vol. 92, pp. 6728-6732 DOI: 10.1063/1.1517749
  • Lebedev S.V., Patton C.E., Wittenauer M.A., Saraf L.V., Ramesh R. Frequency and Temperature Dependence of the Ferromagnetic Resonance Linewidth in Single Crystal Platelets and Pulsed Laser Deposited Films of Barium Ferrite. Journal of Applied Physics, 2002, vol. 91, pp. 4426-4431 DOI: 10.1063/1.1450057
  • Song Y.-Y., Das J., Wang Z., Tong W., Patton C.E. In-Plane c-Axis Oriented Barium Ferrite Films With Self-Bias and Low Microwave Loss. Applied Physics Letter, 2008, vol. 93, 172503 DOI: 10.1063/1.3010374
  • Chen Y., Smith I., Geiler A.L., Vittoria C., Zagorodnii V., Celinski Z., Harris V.G. Realization of Hexa¬gonal Barium Ferrite Thick Films on Si Substrates Using a Screen Printing Technique. J. Phys. D: Appl. Phys., 2008, vol. 41, 095006 DOI: 10.1088/0022-3727/41/9/095006
  • Junliang L., Ping L., Xingkai Z., Dongjun P., Peng Z., Ming Z. Synthesis and Properties of Single Domain Sphere-Shaped Barium Hexa-Ferrite Nano Powders Via an Ultrasonic-Assisted Co-Precipitation Route. Ultrasonics Sonochemistry, 2015, vol. 23, pp. 46-52 DOI: 10.1016/j.ultsonch.2014.08.001
  • Yamauchi T., Tsukahara Y., Sakata T., Mori H., Chikata T., Katoh S., Wada Y. Barium Ferrite Powders Prepared by Microwave-Induced Hydrothermal Reaction and Magnetic Property. Journal of Magnetism and Magnetic Materials, 2009, vol. 321, pp. 8-11 DOI: 10.1016/j.jmmm.2008.07.005
  • Meng Y.Y., He M.H., Zeng Q., Jiao D.L., Shukla S., Ramanujan R.V., Liu Z.W. Synthesis of Barium Ferrite Ultrafine Powders by a Sol-Gel Combustion Method Using Glycine Gels. Journal of Alloys and Compounds, 2014, vol. 583, pp. 220-225 DOI: 10.1016/j.jallcom.2013.08.156
  • Almeida R.M., Paraguassu W., Pires D.S., Corre R.R., Araujo Paschoal C.W. Impedance Spectroscopy Analysis of BaFe12O19 M-Type Hexaferrite Obtained by Ceramic Method. Ceramics International, 2009, vol. 35, pp. 2443-2447 DOI: 10.1016/j.ceramint.2009.02.020
  • Molaei M.J., Ataie A., Raygan S., Rahimipour M.R., Picken S.J., Tichelaar F.D., Legarra E., Plazaola F. Magnetic Property Enhancement and Characterization of Nano-Structured Barium Ferrite by Mechano-Thermal Treatment. Materials Characterization, 2012, vol. 63, pp. 83-89 DOI: 10.1016/j.matchar.2011.11.004
  • Gao X. Du Y., Liu X., Xu P., Han X. Synthesis and Characterization of Co-Sn Substituted Barium Ferrite Particles by a Reverse Microemulsion Technique. Materials Research Bulletin, 2011, vol. 46, pp. 643-648 DOI: 10.1016/j.materresbull.2011.02.002
  • Balbashov A.M., Egorov S.K. Apparatus for Growth of Single Crystals of Oxide Compounds by Floating Zone Melting With Radiation Heating. Journal of Crystal Growth, 1981, no. 52. pp. 498-504 DOI: 10.1016/0022-0248(81)90328-6
  • Gambino R.J., Leonhard F. Growth of Barium Ferrite Single Crystals. Journal of American Ceramic Society, 1961, no. 44, pp. 221-224 DOI: 10.1111/j.1151-2916.1961.tb15364.x
  • Bugaris D.E., Loye H.-C. Materials Discovery by Flux Crystal Growth: Quaternary and Higher Order Oxides. Angew. Chem., Int. Ed., 2012, vol. 51, pp. 3780-3811 DOI: 10.1002/anie.201102676
  • Pullar R.C. Hexagonal Ferrites: A Review of the Synthesis, Properties and Applications of Hexaferrite Ceramics. Progress in Materials Science, 2012, vol. 57, pp.1191-1334 DOI: 10.1016/j.pmatsci.2012.04.001
  • Винник Д.А., Жеребцов Д.А., Машковцева Л.С. Выращивание легированных монокристалловферрита бария из флюса. Доклады академии наук. 2013. Т. 449, № 2. С. 1-2.
  • Vinnik D.A., Zherebtsov D.A., Mashkovtseva L.S., Nemrava S., Bischoff M., Perov N.S., Semisalova A.S., Krivtsov I.V., Isayenko L.I., Mikhailov G.G., Niewa R. Growth, Structural and Magnetic Characterization of Al-Substituted Barium Hexaferrite Single Crystals. Journal of Alloys and Compounds, 2015, no. 615, pp. 1043-1046 DOI: 10.1016/j.jallcom.2014.07.126
  • Vinnik D.A., Zherebtsov D.A., Mashkovtseva L.S., Nemrava S., Perov N.S., Semisalova A.S., Krivtsov I.V., Isaenko L.I., Mikhailov G.G., Niewa R. Ti-Substituted BaFe12O19 Single Crystal Growth and Characterization. Crystal Growth and Design, 2014, no. 14, pp. 5834-5839 DOI: 10.1021/cg501075c
  • Vinnik D.A. Zherebtsov D.A., Mashkovtseva L.S., Nemrava S., Semisalova A.S., Galimov D.M., Isaenko L.I., Niewa R. Structural and Magnetic Characterization of Co-and Ni-substituted Barium Hexaferrite Single Crystals Growth. Journal of Alloys and Compounds, 2015, no. 628, pp. 480-484 DOI: 10.1016/j.jallcom.2014.12.124
  • Vinnik D.A., Tarasova A., Zherebtsov D.A., Mashkovtseva L.S., Gudkova S.A., Nemrava S., Yakushechkina A.K., Semisalova A.S., Isaenko L.I., Niewa R. Cu-Substituted Barium Hexaferrite Crystal Growth and Characterization. Ceramics International, 2015, no. 41, pp. 9172-9176 DOI: 10.1016/j.ceramint.2015.03.051
  • Vinnik D.A., Zherebtsov D.A., Mashkovtseva L.S., Nemrava S., Yakushechkina A.K., Semisalova A.S., Gudkova S.A., Anikeev A.N., Perov N.S., Isaenko L.I., Niewa R. Tungsten Substituted BaFe12O19 Single Crystal Growth and Characterization. Materials Chemistry and Physics, 2015, no. 155, pp. 99-103 DOI: 10.1016/j.matchemphys.2015.02.005
  • Shlyk L., Vinnik D.A., Zherebtsov D.A., Hu Z., Kuo C.-Y., Chang C.-F., Lin H.-J., Yang L.-Y., Semisalova A.S., Perov N.S., Langer T., Pottgen R., Nemrava S., Niewa R. Single Crystal Growth, Structural Characteristics and Magnetic Properties of Chromium Substituted M-Type Ferrites. Solid State Sciences, 2015, vol. 50, pp. 23-31. DOI: 10.1016/j.solidstatesciences.2015.10.005
  • Vinnik D.A. Semisalova A.S., Yakushechkina A.K., Nemrava S., Gudkova S.A., Zherebtsov D.A., Perov N.S., Isaenko L.I., Niewa R. Growth, Structural and Magnetic Characterization of Zn-Substituted Barium Hexaferrite Single Crystals. Materials Chemistry and Physics, 2015, no. 163, pp. 416-420 DOI: 10.1016/j.matchemphys.2015.07.059
  • Винник Д.А. Резистивная печь для выращивания монокристаллов. Бутлеровские сообщения. 2014. Т. 39, № 9. -С. 153-154.
  • Shannon R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallographica, 1976, vol. 32, pp. 751-767 DOI: 10.1107/S0567739476001551
  • Adelsköld V. X-ray Studies on Magneto-Plumbite, PbO•6Fe2O3, and Other Substances Resembling “Beta-Alumina”, Na2O•11Al2O3. Arkiv for Kemi Mineralogioch Geologi, 1938, vol. 12A, pp. 1-9.
  • Aidelberg J., Flicstein J. Schieber M. Cellular Growth in BaFe12O19 Crystals Solidified from Flux Solvent. J. Crystal Growth, 1974, vol. 21, pp. 195-202 DOI: 10.1016/0022-0248(74)90005-0
Еще
Статья научная