Increasing efficiency of copper-molybdenum ore flotation using measurement of pulp absorption capacity

Бесплатный доступ

A promising line in development of reagent consumption automatic control systems is applying data on measuring collector concentration in the pulp aqueous phase. For effective using data on the concentration of the nonionic collector - allyl ester of amylxanthogenic acid - in the process of flotation, the studies were carried out and the method for analyzing its residual concentration in the flotation pulp liquid phase was developed. The developed spectral technique for measuring the concentration of amylxanthogenic acid allyl ester in the pulp aqueous phase showed stable results in the temperature range of 10 to 25 °С, pH range of 8.5 to 11.0. This allowed applying the technique to measuring residual concentration of AeroMX-5140 collector in the operation of bulk sulphide flotation in copper-molybdenum ore beneficiation. The laboratory tests allowed determining connection between the indicators of residual concentration with the main indicators of copper-molybdenum flotation. The studies showed that increasing the residual concentration of the nonionic collector occurs with increasing its consumption and pH of the pulp aqueous phase. It is shown that significant increase in metal recoveries is observed at similar residual collector concentrations: for copper, in the range of 0.25 to 0.5 mg/l, and for molybdenum and pyrite iron, at the concentrations from 0.25 to 1 mg/l. The possibility of using the nonionic collector residual concentration as the informational indicator of the flotation process has been substantiated. It is proposed to use the ore absorption capacity in relation to the collector applied as an indicator of the ore grade. It is shown that using this indicator reduces relative variance for the dependences of the yields of individual ore types and increases the accuracy of determining the composition of the processed ore as a mixture of typical ore grades. An algorithm for automated control of the consumption of flotation reagents based on the advanced control of the processed ore elemental and mineral composition was developed and tested at Erdenet GOK processing plant, with the calculation of the pulp absorption capacity in relation to the nonionic collector, including the beneficiation process indicators determination using an economically-oriented optimization criterion. The expected economic effect from the reduction of metal losses amounted to USD 145 thous.

Еще

Copper-molybdenum ores, flotation, collector concentration, uv spectrophotometry, absorption capacity, regulation, optimization

Короткий адрес: https://sciup.org/140250774

IDR: 140250774   |   DOI: 10.17073/2500-0632-2020-3-188-200

Статья научная