Increasing the positioning accuracy of the GLONASS system
Автор: Timofeev A.L., Sultanov A.Kh., Meshkov I.K., Gizatulin A.R.
Журнал: Сибирский аэрокосмический журнал @vestnik-sibsau
Рубрика: Авиационная и ракетно-космическая техника
Статья в выпуске: 4 т.25, 2024 года.
Бесплатный доступ
The accuracy of determining coordinates in global positioning systems is determined by the number of satellites simultaneously visible to the consumer's navigation equipment. Over most of the earth's surface, there are up to 11 GLONASS satellites above the horizon at the same time, but the signal-to-noise ratio in the communication channel required for error-free information reception is often ensured only for 2-4 satellites. To improve the positioning accuracy, it is proposed to use the holographic noise-immune coding method based on the holographic representation of the digital signal. The message coding process is a mathematical modeling of a hologram created in virtual space by a wave from the input signal source. It is shown that the holographic representation of the signal has significantly greater noise immunity and allows restoring the original digital combination when most of the code message is lost and when the coded signal is distorted by noise several times exceeding the signal level. The studies have shown that the introduction of holographic coding in the GLONASS satellite communication channel will enable consumer navigation equipment to receive information from a larger number of satellites, which will significantly improve the positioning accuracy. In a common situation where the required signal-to-noise ratio is maintained for only 4 GLONASS satellites, the positioning error exceeds 10 meters. Using holographic coding in the same situation, information from 9 satellites will be decoded without error, and the positioning error will be about 2 meters.
Holographic coding, error correction in the communication channel, positioning error
Короткий адрес: https://sciup.org/148330575
IDR: 148330575 | DOI: 10.31772/2712-8970-2024-25-4-482-492