Power engineering of the tangential supply device of the microturbine of the thermal control system of a promising spacecraft

Автор: Yu.N. Shevchenko, A.A. Kishkin, A.A. Zuev, A.V. Delkov, D.A. Zhuikov

Журнал: Siberian Aerospace Journal @vestnik-sibsau-en

Рубрика: Aviation and spacecraft engineering

Статья в выпуске: 1 vol.25, 2024 года.

Бесплатный доступ

This paper presents an overview of the current technical problem related to two-phase spacecraft thermal control systems and possible technical applications of thermal energy recovery in the organic Rankine cycle as an integral part of thermal management systems. The design solution involves the integration of a steam microturbine behind an evaporator radiator. The microturbine is a tangential supply device and a radially centripetal impeller of low speed nst<40. In this area, there is no reliable data on the design and energy of both the supply device and the impeller. The energy (loss of enthalpy) of the supply device mainly determines the transport of the swirling flow to the impeller and, as a result, the circumferential operation on the turbine. A prototype of a radial microturbine has been developed and presented in order to evaluate the design of the flow part of both the supply device and the impeller. As a result of the analysis, the main determining hydrodynamic areas necessary for hydrodynamic analysis and mathematical elaboration of the flow calculation algorithm with an assessment of energy losses are identified: the flow of a swirling flow of a radial-annular slit; axial-annular slit and tangential supply device. The first two algorithms assume computational modeling, the model of energy losses in a tangential supply device is not amenable to analytical modeling because it includes a sequence (or compatibility) of flows under boundary conditions defined as “local resistances”: the sudden expansion, reversal of the flow, together with a section of radially circumferential flow, the mutual influence of these boundary conditions assumes only an expe rimental assessment of energy losses in a tangential supply device through the loss coefficient of local resistance in the range of changes in geometric and operating parameters. As a result of experimental studies, a database has been proposed on the loss coefficient of tangential microturbine supply devices in the field of the practical range of the existence of operating and design parameters.

Еще

Jet turbines, centrifugal turbines, total energy loss coefficient, tangential supply devices, impeller, circumferential turbine operation, Rankine cycle, low-boiling working fluid

Короткий адрес: https://sciup.org/148329729

IDR: 148329729   |   DOI: 10.31772/2712-8970-2024-25-1-126-142

Список литературы Power engineering of the tangential supply device of the microturbine of the thermal control system of a promising spacecraft

  • Kishkin A. A., Shilkin O. V., Delkov A. V. et al. Organicheskiy tsikl Renkina v avtonomnoy teploenergeticheskoy sisteme. [The organic Rankine cycle in an autonomous thermal power system]. Krasnoyarsk, 2019, 234 p.
  • Kishkin A. A., Chernenko D. V., Khodenkov A. A. et al. [Development of low-potential heat recovery plants based on the organic Rankine cycle]. Al'ternativnaya energetika i ekologiya. 2014, No. 3 (4), P. 35–36 (In Russ.).
  • Kishkin A. A. Chernenko E. V., Chernenko D. V. et al. Calculation and analysis of thermal engineering systems operating in a closed cycle. Materiály VIII mezinárodní vědecko – praktická conference Dny vědy – 2012. Díl 91. Technické vědy: Praha. Publishing House Education and Science s.r.o, 2012.
  • Borovsky B. I. Energeticheskie pararametry i kharakteristiki vysokooborotnykh lopastnykh nasosov. [Energy parameters and characteristics of high-speed vane pumps]. Moscow, Mashinostroenie Publ., 1989, 184 p.
  • Kishkin A. A., Nazarov V. P., Zhuykov D. A., Chernenko D. V. Teoriya prostranstvennogo pogranichnogo sloya v gidrodinamike turbomashin [The theory of the spatial boundary layer in the hydrodynamics of turbomachines]. Krasnoyarsk, 2013, 250 p.
  • Kishkin A. A., Zuev A. A., Delkov A. V. Trekhmernyy temperaturnyy pogranichnyy sloy v teorii konvektivnogo teploobmena [Temperature boundary layer in the theory of convective heat transfer]. Krasnoyarsk, 2015, 282 p.
  • Smirnov M. V. Bezlopatochnye tsentrobezhnye stupeni dlya turbodetandorov maloy moshchnosti. Dis. kand. [Bladeless centrifugal stages for low-power turbodetandors. Dis. Cand.]. St. Peterburg. 2019, 154 p.
  • Kler A. M., Dekanova N. P., Tyurina E. A. et al. Teplosilovye sistemy: Optimizatsionnye issledovaniya [Thermal power systems: Optimization studies]. Novosibirsk, Nauka Publ., 2005, 236 p.
  • Kraev M. V., Lukin V. A., Ovsyannikov B. V. Maloraskhodnye nasosy aviatsionnykh I kosmicheskikh sistem. [Low-flow pumps for aviation and space systems]. Moscow, Mashinostroenie Publ., 1985, 128 p.
  • Kraev M. V., Kishkin A. A., Sizykh D. N. Gidro ооdinamika maloraskhodnykh nasosnykh agregatov [Hydrodynamics of low-flow pumping units]. Krasnoyarsk, 198, 157 p.
  • Shevchenko Yu. N., Shilkin O. V., Kishkin A. A. et al. [Prototyping of a microturbogenerator and setting the research task]. V sbornike: materialov Vserossiyskoy nauchno-prakticheskoy konferentsii “Ispytaniya, diagnostika, nadezhnost'. Teoriya i praktika” [In the collection: materials of the All- Russian scientific and practical conference “Tests, Diagnostics, reliability. Theory and practice”]. Krasnoyarsk, 2023, P. 17–21 (In Russ.).
  • Shilkin O. V., Kishkin A. A., Delkov A. V. et al. Modelirovanie i konstruirovanie dvukhfaznykh sistem termo- regulirovaniya kosmicheskikh apparatov [Modeling and design of two-phase thermal control systems for spacecraft]. Krasnoyarsk, 2022, 192 p.
  • Shevchenko Yu. N., Kishkin A. A., Delkov A. V., Abdullaev M. U. [The speed coefficient of the tangential supply of a subsonic centripetal turbine]. Omskiy nauchnyy vestnik. Seriya Aviatsionnoraketnoe i energeticheskoe mashinostroenie. 2022, Vol. 6, No. 2, P. 78–84 (In Russ.).
  • Idel'chik I. E. Spravochnik po gidravlicheskim soprotivleniyam [Handbook of Hydraulic Resistance]. Moscow, Mashinostroenie Publ., 1992, 672 p.
  • Kishkin A. A., Shevchenko Yu. N., Delkov A. V. Analysis of the key design features of lowpower turbines for electricity generation. IOP Conference Series: Materials Science and Engineering. 2020, Vol. 919, P. 062030. Doi: 10.1088/1757-899X/919/6/062030.
  • Zuev A. A., Kishkin, A. A., Zhuikov D. A. et al. Energy equations for the temperature threedimensional boundary layer for the flow within boundary conditions of turbo machinery. IOP Conference Series: Materials Science and Engineering. 2019, vol. 537, P. 22008. Doi: 10.1088/1757-899X/537/2/022008.
  • Karman Tn. Uber laminare und turbulente Reibung. ZAAM. 1921, No. 1, P. 233–252.
Еще
Статья научная