Preparation and characterization of renewable bio-polyol from the edible seed oil
Автор: Jebisha J.L., Begila David S.
Журнал: Журнал стресс-физиологии и биохимии @jspb
Статья в выпуске: 3 т.20, 2024 года.
Бесплатный доступ
Polyol is an organic compound containing multiple hydroxyl groups. This study looked at the possibility of using an edible oil extract from Salvia hispanica seeds as a sustainable source for polyols and, eventually, biodiesel or polyurethane. For this, a combination of hydrogen peroxide and acetic acid was used to create new polyol from the aforementioned oil in one-step synthesis. Standard techniques such as physicochemical analysis, phytochemical and basic radical identification, FTIR and NMR were used to characterize the polyol derivative that was extracted from the oil. Antimicrobial activity of both oil and polyol were tested against certain bacteria and fungi. Spectral analysis demonstrated the formation of polyol and this result indicated the possible of using Salvia hispanica polyol as a raw material for the preparation of bio-polymers.
Salvia hispanica oil, polyol, ftir, nmr, antimicrobial, bio-polymers
Короткий адрес: https://sciup.org/143182811
IDR: 143182811
Список литературы Preparation and characterization of renewable bio-polyol from the edible seed oil
- AOAC. (1995) Official Method Cd 3d-63, Official Methods and Recommended Practices of the American Oil Chemists' Society; AOCS Press: Champaign, IL, USA,.
- Ayerza, R. (2010). Effects of seed color and growing locations on fatty acid content and composition of two chia (Salvia hispanica L.) genotypes. Journal of the American Oil Chemists' Society, 87, 11611165.
- Biermann, U., Friedt, W., Lang, S., Lühs, W., Machmüller, G., Metzger, J. O.....& Schneider, M. P. (2000). New syntheses with oils and fats as renewable raw materials for the chemical industry. Angewandte Chemie International Edition, 39(13), 2206-2224.
- Chaudhari, A., Kulkarni, R., Mahulikar, P., Sohn, D., & Gite, V. (2015). Development of PU coatings from neem oil based alkyds prepared by the monoglyceride route. Journal of the American Oil Chemists' Society, 92, 733-741.
- Dai, J., Ma, S., Wu, Y., Han, L., Zhang, L., Zhu, J., & Liu, X. (2015). Polyesters derived from itaconic acid for the properties and bio-based content enhancement of soybean oil-based thermosets. Green chemistry, 17(4), 2383-2392.
- de Espinosa, L. M., & Meier, M. A. (2011). Plant oils: The perfect renewable resource for polymer science?!. European Polymer Journal, 47(5), 837852.
- Eissen, M., Metzger, J. O., Schmidt, E., & Schneidewind, U. (2002). 10 years after Rio— concepts on the contribution of chemistry to a sustainable development. Angewandte Chemie International Edition, 41(3), 414-436.
- Fernandes, F. C., Kirwan, K., Lehane, D., & Coles, S. R. (2017). Epoxy resin blends and composites from waste vegetable oil. European Polymer Journal, 89, 449-460.
- Guner, F. S., Yagci, Y., & Erciyes, A. T. (2006). Polymers from triglyceride oils. Progress in polymer science, 31(7), 633-670.
- Ji, D., Fang, Z., He, W., Luo, Z., Jiang, X., Wang, T., & Guo, K. (2015). Polyurethane rigid foams formed from different soy-based polyols by the ring opening of epoxidised soybean oil with methanol, phenol, and cyclohexanol. Industrial crops and products, 74, 76-82.
- Kosari, A., Moayed, M. H., Davoodi, A., Parvizi, R., Momeni, M., Eshghi, H., & Moradi, H. (2014). Electrochemical and quantum chemical assessment of two organic compounds from pyridine derivatives as corrosion inhibitors for mild steel in HCl solution under stagnant condition and hydrodynamic flow. Corrosion Science, 78, 138150.
- Kuranska, M., Prociak, A., Kirpluks, M., & Cabulis, U. (2015). Polyurethane-polyisocyanurate foams modified with hydroxyl derivatives of rapeseed oil. Industrial Crops and Products, 74, 849-857.
- Monteavaro, L. L., Da Silva, E. O., Costa, A. P. O., Samios, D., Gerbase, A. E., & Petzhold, C. L. (2005). Polyurethane networks from formiated soy polyols: synthesis and mechanical
- characterization. Journal of the American Oil Chemists' Society, 82(5), 365-371.
- Saalah, S., Abdullah, L. C., Aung, M. M., Salleh, M. Z., Biak, D. R. A., Basri, M., & Jusoh, E. R. (2015). Waterborne polyurethane dispersions synthesized from jatropha oil. Industrial Crops and Products, 64, 194-200.
- Septevani, A. A., Evans, D. A., Chaleat, C., Martin, D. J., & Annamalai, P. K. (2015). A systematic study substituting polyether polyol with palm kernel oil based polyester polyol in rigid polyurethane foam. Industrial Crops and Products, 66, 16-26.
- Stan, R., Chira, N., Ott, C., Todasca, C., & Perez, E. (2008). Catanionic organogelators derived from D-sorbitol and natural fatty acids. Rev. Chim, 59(3), 273-276.
- Tian, H., Tang, Z., Zhuang, X., Chen, X., & Jing, X. (2012). Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Progress in Polymer Science, 37(2), 237-280.
- Ugarte, L., Saralegi, A., Fernández, R., Martín, L., Corcuera, M. A., & Eceiza, A. (2014). Flexible polyurethane foams based on 100% renewably sourced polyols. Industrial Crops and Products, 62, 545-551.
- Yoo, S. H., Kim, Y. W., Chung, K., Baik, S. Y., & Kim, J. S. (2012). Synthesis and corrosion inhibition behavior of imidazoline derivatives based on vegetable oil. Corrosion Science, 59, 42-54.
- Zhang, C., Madbouly, S. A., & Kessler, M. R. (2015). Biobased polyurethanes prepared from different vegetable oils. ACS applied materials & interfaces, 7(2), 1226-1233.
- Zieleniewska, M., Leszczynski, M. K., Kuranska, M., Prociak, A., Szczepkowski, L., Krzyzowska, M., & Ryszkowska, J. (2015). Preparation and characterisation of rigid polyurethane foams using a rapeseed oil-based polyol. Industrial Crops and Products, 74, 887-897.