Preparing Mammograms for Classification Task: Processing and Analysis of Mammograms

Автор: Aderonke A. Kayode, Babajide S.Afolabi, Bolanle O. Ibitoye

Журнал: International Journal of Information Engineering and Electronic Business(IJIEEB) @ijieeb

Статья в выпуске: 3 vol.8, 2016 года.

Бесплатный доступ

Breast cancer is the most common cancer found in women in the world. Mammography has become indispensable for early detection of breast cancer. Radiologists interpret patients' mammograms by looking for some significant visual features for decision making. These features could have different interpretations based on expert's opinion and experience. Therefore, to solve the problem of different interpretations among experts, the use of computer in facilitating the processing and analysis of mammograms has become necessary. This study enhanced and segmented suspicious areas on mammograms obtained from Radiology Department, Obafemi Awolowo University Teaching Hospital, Ile-Ife, Nigeria. Also, Features were extracted from the segmented region of interests in order to prepare them for classification task. The result of implementation of enhancement algorithm used on mammograms shows all the subtle and obscure regions thereby making suspicious regions well visible which in turn helps in isolating the regions for extraction of textural features from them. Also, the result of the feature extraction shows pattern that will enable a classifier to classify these mammograms to one of normal, benign and malignant classes.

Еще

Mammograms, Classification, Abnormalities, Enhancement, Segmentation, Feature extraction

Короткий адрес: https://sciup.org/15013423

IDR: 15013423

Список литературы Preparing Mammograms for Classification Task: Processing and Analysis of Mammograms

  • Maitra, I. K., Nag, S. and Bandyopadhyay, S. B. (2011). Identification of abnormal masses in digital mammography images. International Journal of Computer Graphics. 2(1):17-30.
  • Choua, S. M., Leeb, T. S., Shaoc, Y. E., and Chenb, I. F. (2004). Mining the breast cancer pattern using artificial neural networks and multivariate adaptive regression splines. Expert Systems with Applications. 27:133–142.
  • Andreea, G. I., Pegza, R., Lascu, L., Bondari, S., Zoia Stoica, Z. And Bondari, A. (2011). The Role of Imaging Techniques in Diagnosis of Breast Cancer. Journal of Current Health Sciences, 37(2):241-248.
  • Ciccone, G., Vineis, P., Frigerio, A., Segnan, N. (1992). Inter-observer and intraobserver variability of mammographic examination interpretation: a field research. European Journal of Cancer. 28A:1054–1058.
  • Elmore, J. G., Wells, C. K., Lee, C. H., Howard, D. H. and Feinstein A. R. (1994). Variability in radiologists' interpretations of mammograms. New England Journal of Medicine. 331:1493–1099.
  • Beam, C. A., Layde, P. M., and Sullivan, D. C., (1996). Variability in the interpretation of screening mammograms by US radiologists. Arch Intern Med 156: 209–13.
  • Kerlikowske, K., Grady, D., Barclay, J., Frankel, S. D., Ominsky, S. H., Sickles, E. A. and Ernster, V. (1998). Variability and Accuracy in Mammographic Interpretation Using the ACR's BIRADS. Journal of the National Cancer Institute, 90(23), pp 1801-1809.
  • Elmore, J. G., Miglioretti, D. L., Reisch, L. M., Barton, M. B., Kreuter, W., Christiansen, C. L., and Fletcher, S. W. (2002). Screening Mammograms by Community Radiologists: Variability in False-Positive Rates. Journal of the National Cancer Institute, 94(18):1373-1380.
  • Ooms, E. A., Zonderland, H. M., Eijkemans, M. J., Kriege, M., Delavary, B. M., Burger, C. W. and Ansink. A. C. (2007). Mammography: Interobserver variability in breast density assessment. The Breast 16(6):568-576.
  • Duijm, L. E., Louwman, M. W., Groenewoud, J. H., Poll-Franse, L. V., Fracheboud, J., and Coebergh. J. W. (2009) Inter-observer variability in mammography screening and effect of type and number of readers on screening outcome. British Journal of Cancer 100(6): 901-907.
  • Azar, A. T. (2014). Statistical Analysis for Radiologists' Interpretations Variability in Mammograms. International Journal of Systems Biology and Biomedical Technologies 1:4, 28-46
  • Obenauer, S., Hermann, K. P. and Grabbe E. (2005). Applications and literature review of the BI-RADS classification. Eur Radiol; 15:1027–1036.
  • Dougherty, G. (2010). Image analysis in medical imaging: recent advances in selected examples. Biomedical Imaging and Intervention Journal. 6(3):e32.
  • Bovis, K., and Singh, S. (2000). Detection of masses in mammograms using texture feature, In: Proc. of the 15th Int. Conf. on Pattern Recognition (ICPR'00), pp 267-269.
  • Kayode, A. A., Afolabi, B. S. and Ibitoye, B. O. (2015). An Explorative Survey of Image Enhancement Techniques Used in Mammography. International Journal of Computer Science Issues, 12(1):72-79.
  • Ramani, R. and Vanitha, N. S. (2014). Computer Aided Detection of Tumours in Mammograms. I.J. Image, Graphics and Signal Processing. 4:54-59.
  • Deepa, S. and Bharathi, V. S. (2013). Efficient ROI segmentation of Digital Mammogram images using Otsu's N thresholding method. Indian Journal of Automation and Artificial Intelligence, 1(2): 51-56.
  • Yuvaraj, K. and Ragupathy, U.S. (2013). Automatic Mammographic Mass Segmentation based on Region Growing Technique. 3rd International Conference on Electronics, Biomedical Engineering and its Applications (ICEBEA'2013) Singapore. Pp 169-173.
  • Elfarra, B. K. and Abuhaiba, I. S. I. (2013). New Feature Extraction Method for Mammogram Computer Aided Diagnosis. International Journal of Signal Processing, Image Processing and Pattern Recognition, 6(1): 13-36
  • Elfarra, B. K. and Abuhaiba, I. S. I. (2012). Mammogram Computer Aided Diagnosis. International Journal of Signal Processing, Image Processing and Pattern Recognition, 5(4): 1-30.
  • Akilandeswari, U., Nithya, R. and Santhi, B. (2012). Review on Feature Extraction Methods in Pattern Classification. European Journal of Scientific Research. 71(2):265-272.
  • Pradeep, N., Girisha, H., Sreepathi, B. and Karibasappa K. (2012). Feature extraction of mammograms. International Journal of Bioinformatics Research; 4(1): pp. 241-244.
  • Haralick, R. M., Shanmugan, K. and Dinstein, I. (1973). Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics, 3(6): 610-621.
  • Soh, L. K. and Tsatsoulis, C. (1999). Texture Analysis of SAR Sea Ice Imagery Using Gray Level Co-Occurrence Matrices. IEEE Transactions on Geoscience and Remote Sensing, 37(2):780–795.
  • Vasantha, M., Bharathi, V. S. and Dhamodharan, R. (2010). Medical Image Feature Extraction, Selection and Classification. International Journal of Engineering Science and Technology, 2(6):2071-2076
  • MathWorks, Inc. (2013a). MATLAB® Creating Graphical User Interfaces, The MathWorks, Inc, Natick, MA 01760-2098, USA.
  • Nasiruzzaman, A. B. M. (2010). Using MATLAB to Develop Standalone Graphical User Interface (GUI) Software Packages for Educational Purposes, Matlab - Modelling, Programming and Simulations, Emilson Pereira Leite, E. P. (Ed.), ISBN: 978-953-307-125-1, InTech.
  • Haralick, R. M. (1979). Statistical and structural approach to texture. Proceeding of the IEEE, 67: 786-804.
Еще
Статья научная