Применение 3D-моделирования в персонифицированном подходе к накостному остеосинтезу (обзор литературы)

Автор: Панкратов А. С., Ларцев Ю. В., Рубцов А. А., Огурцов Д. А., Ким Ю. Д., Шмельков А. В., Князев Н. А.

Журнал: Вестник медицинского института "РЕАВИЗ": реабилитация, врач и здоровье @vestnik-reaviz

Рубрика: Информационно-вычислительные технологии в медицине

Статья в выпуске: 1 т.13, 2023 года.

Бесплатный доступ

Появление технологии обработки изображений и трёхмерной печати открывает множество возможностей для применения в травматологии и ортопедии с учётом особенностей пациента. Современные способы медицинской визуализации с высоким разрешением могут обрабатывать данные для создания трёхмерных изображений, которые необходимы для печати физических объектов. В свою очередь, трёхмерные принтеры способны создать модель любой сложности формы и геометрии. В статье выполнен обзор литературы, посвящённой трёхмерному цифровому моделированию анатомических структур пациентов для формовки по ним металлофиксаторов для накостного сотеосинтеза. Поиск данных осуществлялся по базам Scopus, Web of Scince, Pubmed, РИНЦ за период 2012-2022 гг. Подтверждена эффективность трёхмерной печати для предоперационного моделирования накостных пластин: последняя идеально соответствует уникальной анатомии пациента, поскольку шаблон для неё построен по материалам компьютерной томографии. Индивидуальные шаблоны могут быть полезны и удобны для хирурга, когда геометрия костей пациентов выходит за рамки стандартных, и когда ожидаются улучшенные результаты операции из-за лучшего соответствия имплантатов анатомическим потребностям пациентов.

Еще

3d-печать, индивидуальные имплантаты, обработка изображений, пациент-специфический инструментарий, персонифицированная ортопедия, остеосинтез, блокирующая компрессионная пластина, фиксация моста, малоинвазивный остеосинтез с применением накостной пластины, открытая репозиция и внутренняя фиксация

Еще

Короткий адрес: https://sciup.org/143179926

IDR: 143179926   |   DOI: 10.20340/vmi-rvz.2023.1.ICTM.3

Список литературы Применение 3D-моделирования в персонифицированном подходе к накостному остеосинтезу (обзор литературы)

  • Lal H, Patralekh MK. 3D printing and its applications in orthopaedic trauma: A technological marvel. J Clin Orthop Trauma. 2018 Jul-Sep;9(3):260-268. https://doi.org/10.1016/jjcot.2018.07.022. Epub 2018 Aug 3. PMID: 30202159; PMCID: PMC6128305.
  • Chang D, Tummala S, Sotero D, Tong E, Mustafa L, Mustafa M, Browne WF, Winokur RS. Three-Dimensional Printing for Procedure Rehearsal/Simulation/Planning in Interventional Radiology. Tech Vasc Interv Radiol. 2019 Mar;22(1): 14-20. https://doi.org/10.1053Zj.tvir.2018.10.004. Epub 2018 Nov 2. PMID: 30765070.
  • Langridge B, Momin S, Coumbe B, Woin E, Griffin M, Butler P. Systematic Review of the Use of 3-Dimensional Printing in Surgical Teaching and Assessment. J Surg Educ. 2018 Jan-Feb;75(1):209-221. https://doi.org/10.1016/jjsurg.2017.06.033. Epub 2017 Jul 17. PMID: 28729190.
  • Boudissa M, Courvoisier A, Chabanas M, Tonetti J. Computer assisted surgery in preoperative planning of acetabular fracture surgery: state of the art. Expert Rev Med Devices. 2018 Jan;15(1):81-89. https://doi.org/10.1080/17434440.2017.1413347. Epub 2017 Dec 10. PMID: 29206497.
  • Gadia A, Shah K, Nene A. Emergence of Three-Dimensional Printing Technology and Its Utility in Spine Surgery. Asian Spine J. 2018 Apr;12(2):365-371. https://doi.org/10.4184/asj.2018.12.2.365. Epub 2018 Apr 16. PMID: 29713420; PMCID: PMC5913030.
  • Garg B, Gupta M, Singh M, Kalyanasundaram D. Outcome and safety analysis of 3D-printed patient-specific pedicle screw jigs for complex spinal deformities: a comparative study. Spine J. 2019 Jan;19(1):56-64. https://doi.org/10.1016/j.spinee.2018.05.001. Epub 2018 May 3. PMID: 29730456.
  • Trauner KB. The Emerging Role of 3D Printing in Arthroplasty and Orthopedics. J Arthroplasty. 2018 Aug;33(8):2352-2354. https://doi.org/10.1016/j.arth.2018.02.033. Epub 2018 Feb 16. PMID: 29572035.
  • Mulford JS, Babazadeh S, Mackay N. Three-dimensional printing in orthopaedic surgery: review of current and future applications. ANZ J Surg. 2016 Sep;86(9):648-53. https://doi.org/10.1111/ans.13533. Epub 2016 Apr 12. PMID: 27071485.
  • Wong KC. 3D-printed patient-specific applications in orthopedics. Orthop Res Rev. 2016 Oct 14;8:57-66. https://doi.org/10.2147/0RR.S99614. PMID: 30774470; PMCID: PMC6209352.
  • Willemsen K, Ketel MHM, Zijlstra F, Florkow MC, Kuiper RJA, van der Wal BCH, Weinans H, Pouran B, Beekman FJ, Seevinck PR, Sakkers RJB. 3D-printed saw guides for lower arm osteotomy, a comparison between a synthetic CT and CT-based workflow. 3D Print Med. 2021 Apr 29;7(1):13. https://doi.org/10.1186/s41205-021-00103-x. Erratum in: 3D Print Med. 2021 Nov 17;7(1):37. PMID: 33914209; PMCID: PMC8082893.
  • Caiti G, Dobbe JGG, Strijkers GJ, Strackee SD, Streekstra GJ. Positioning error of custom 3D-printed surgical guides for the radius: influence of fitting location and guide design. Int J Comput Assist Radiol Surg. 2018 Apr;13(4):507-518. https://doi.org/10.1007/s11548-017-1682-6. Epub 2017 Nov 6. PMID: 29110185; PMCID: PMC5880872.
  • Roner S, Carrillo F, Vlachopoulos L, Schweizer A, Nagy L, Fuernstahl P. Improving accuracy of opening-wedge osteotomies of distal radius using a patient-specific ramp-guide technique. BMC Musculoskelet Disord. 2018 Oct 15;19(1):374. https://doi.org/10.1186/s12891-018-2279-0. Erratum in: BMC Musculoskelet Disord. 2018 Nov 19;19(1):403. PMID: 30322393; PMCID: PMC6190568.
  • Roner S, Vlachopoulos L, Nagy L, Schweizer A, Fürnstahl P. Accuracy and Early Clinical Outcome of 3-Dimensional Planned and Guided Single-Cut Osteotomies of Malunited Forearm Bones. J Hand Surg Am. 2017 Dec;42(12):1031.e1-1031.e8. https://doi.org/10.1016/jJhsa.2017.07.002. Epub 2017 Sep 6. PMID: 28888571.
  • Keller M, Guebeli A, Thieringer F, Honigmann P. Overview of In-Hospital 3D Printing and Practical Applications in Hand Surgery. BiomedRes Int. 2021 Mar 26;2021:4650245. https://doi.org/10.1155/2021/4650245. PMID: 33855068; PMCID: PMC8019389.
  • Garcia RI, Jauregui I, Del Amo C, Gandiaga A, Rodriguez O, Margallo L, Voces R, Martin N, Gallego I, Minguez R, Eguiraun H. Implementation of an In-House 3D Manufacturing Unit in a Public Hospital's Radiology Department. Healthcare (Basel). 2022 Sep 16; 10(9): 1791. https://doi.org/10.3390/healthcare10091791. PMID: 36141403; PMCID: PMC9498605.
  • Li C, Cheung TF, Fan VC, Sin KM, Wong CW, Leung GK. Applications of Three-Dimensional Printing in Surgery. Surg Innov. 2017 Feb;24(1):82-88. https://doi.org/10.1177/1553350616681889. Epub 2016 Dec 29. PMID: 27913755.
  • Hecker A, Eberlein SC, Klenke FM. 3D printed fracture reduction guides planned and printed at the point of care show high accuracy - a porcine feasibility study. J Exp Orthop. 2022 Sep 27;9(1):99. https://doi.org/10.1186/s40634-022-00535-2. PMID: 36166163; PMCID: PMC9515260.
  • Ye Z, Zhao S, Zeng C, Luo Z, Yuan S, Li R. Study on the relationship between the timing of conversion from external fixation to internal fixation and infection in the treatment of open fractures of extremities. J Orthop Surg Res. 2021 Nov 7; 16(1 ):662. https://doi.org/10.1186/s13018-021-02814-7. PMID: 34743751; PMCID: PMC8573926.
  • Bear J, Rollick N, Helfet D. Evolution in Management of Tibial Pilon Fractures. Curr Rev Musculoskelet Med. 2018 Dec;11(4):537-545. https://doi.org/10.1007/s12178-018-9519-7. PMID: 30343399; PMCID: PMC6220009.
  • Song K, Zhu B, Jiang Q, Xiong J, Shi H. The radiographic soft tissue thickness is associated with wound complications after open reduction and internal fixation of patella fractures. BMC Musculoskelet Disord. 2022 Jun 6;23(1):539. https://doi.org/10.1186/s12891-022-05498-0. PMID: 35668370; PMCID: PMC9169402.
  • Phen HM, Schenker ML. Minimizing Posttraumatic Osteoarthritis After High-Energy Intra-Articular Fracture. Orthop Clin North Am. 2019 Oct;50(4):433-443. https://doi.org/10.1016Zj.ocl.2019.05.002. Epub 2019 Jul 12. PMID: 31466660.
  • Borrelli J Jr, Olson SA, Godbout C, Schemitsch EH, Stannard JP, Giannoudis PV Understanding Articular Cartilage Injury and Potential Treatments. J Orthop Trauma. 2019 Jun;33 Suppl 6:S6-S12. https://doi.org/10.1097/BOT.0000000000001472. PMID: 31083142.
  • Sagade B, Jagani N, Chaudhary I, Chaudhary M. Congenital Posteromedial Bowing of Tibia: Comparison of Early and Late Lengthening. J PediatrOrthop. 2021 Oct 1;41(9):e816-e822. https://doi.org/10.1097/BPO.0000000000001935. PMID: 34387229.
  • Giordano V Belangero WD, Sa BA, Rivas D, Souto D, Portnoi E, Mariolani JR, Koch HA. Plate-screw and screw-washer stability in a Schatzker type-I lateral tibial plateau fracture: a comparative biomechanical study. Rev Col Bras Cir. 2020 Jun 8;47:e20202546. English, Portuguese. https://doi.org/10.1590/0100-6991e-20202546. PMID: 32520134.
  • Cift H, Cetik O, Kalaycioglu B, Dirikoglu MH, Ozkan K, Eksioglu F. Biomechanical comparison of plate-screw and screw fixation in medial tibial plateau fractures (Schatzker 4). A model study. Orthop Traumatol Surg Res. 2010 May;96(3):263-7. https://doi.org/10.1016/j.otsr.2009.11.016. Epub 2010 Apr 13. PMID: 20488145.
  • Beeres FJ, Diwersi N, Houwert MR, Link BC, Heng M, Knobe M, Groenwold RH, Frima H, Babst R, Jm van de Wall B. ORIF versus MIPO for humeral shaft fractures: a meta-analysis and systematic review of randomized clinical trials and observational studies. Injury. 2021 Apr;52(4):653-663. https://doi.org/10.1016/jjnjury.2020.11.016. Epub 2020 Nov 6. PMID: 33223254.
  • Marazzi C, Wittauer M, Hirschmann MT, Testa EA. Minimally invasive plate osteosynthesis (MIPO) versus open reduction and internal fixation (ORIF) in the treatment of distal fibula Danis-Weber types B and C fractures. J Orthop Surg Res. 2020 Oct 22; 15(1):491. https://doi.org/10.1186/s13018-020-02018-5. PMID: 33092616; PMCID: PMC7583231.
  • Kwak JY, Park HB, Jung GH. Accurate application of a precontoured-locking plate for proximal humeral fractures in Asians: a cadaveric study. Arch Orthop Trauma Surg. 2016 Oct;136(10):1387-93. https://doi.org/10.1007/s00402-016-2538-1. Epub 2016 Aug 4. PMID: 27492633.
  • Dang KH, Ornell SS, Reyes G, Hussey M, Dutta AK. A new risk to the axillary nerve during percutaneous proximal humeral plate fixation using the Synthes PHILOS aiming system. J Shoulder Elbow Surg. 2019 Sep;28(9):1795-1800. https://doi.org/10.1016/jJse.2019.01.019. Epub 2019 Apr 25. PMID: 31031168.
  • Beeres FJP, Quaile OM, Link BC, Babst R. Repositionstechniken bei minimal-invasiver Stabilisierung proximaler Humerusfrakturen [Reduction techniques for minimally invasive stabilization of proximal humeral fractures]. Oper Orthop Traumatol. 2019 Feb;31(1):63-80. German. https://doi.org/10.1007/s00064-018-0586-0. Epub 2019 Jan 25. PMID: 30683977.
  • Wang X, Tang X, Feng J, Zou Y, Zheng X. [Application of "door-shaft method" in limited open reduction and internal fixation with locking plate for two- and three-part fractures of the proximal humerus]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2021 Jul 15;35(7):818-822. Chinese. https://doi.org/10.7507/1002-1892.202103173. PMID: 34308587; PMCID: PMC8311200.
  • Spies CK, Langer M, Hohendorf B, Müller LP, Oppermann J, Unglaub F. Offene Reposition und Schrauben-/Plattenosteosynthese von Mittelhandfrakturen [Open reduction and screw/plate osteosynthesis of metacarpal fractures]. Oper Orthop Traumatol. 2019 Oct;31(5):422-432. German. https://doi.org/10.1007/s00064-019-00625-y. Epub 2019 Sep б. PMID: 314B6B53.
  • Ravindra A, Roebke A, Goyal KS: Cadaveric analysis of proximal humerus locking plate fit: Contour mismatch may lead to malreduction. J Orthop Trauma. 2017;З1:ббЗ-бб7.
  • Bishop JA, Campbell ST, Graves ML, Gardner MJ. Contouring Plates in Fracture Surgery: Indications and Pitfalls. J Am Acad Orthop Surg. 2020 Jul 1б;28(14):б8б-б9б. https://doi.org/10.5435/JAA0S-D-19-00462. PMID: 32б92093.
  • Tucek M, Chochola A, Klika D, Bartonícek J. Epidemiology of scapular fractures. Acta Orthop Belg. 2017 Mar^O^B-^. PMID: 29322BBB.
  • Bhaduri I, Thakur R, Kumar S, Rajak MK. Isolated Fracture of the Acromion Process: A Case Report. Cureus. 2021 Mar 22;13(3):e14032. https://doi.org/10.7759/cureus.14032. PMID: 337б7940; PMCID: PMC79B2B74.
  • Kurahashi S, Takeda S, Mitsuya S, Makihara K, Yamauchi KI. Plate fixation of acromion fracture using a mesh plate. Trauma Case Rep. 2021 Mar 1B;33:100470. https://doi.org/10.1016/j.tcr.2021.100470. PMID: 33B69719; PMCID: PMCB0446B5.
  • El-Din WA, Ali MH. A Morphometric Study of the Patterns and Variations of the Acromion and Glenoid Cavity of the Scapulae in Egyptian Population. J Clin Diagn Res. 201 б Aug;9(B):AC0B-11. https://doi.org/10.7B60/JCDR/201 б/1 4362.63B6. Epub 201 б Aug 1. PMID: 26435934; PMCID: PMC4576525.
  • Beliën H, Biesmans H, Steenwerckx A, Bijnens E, Dierickx C. Prebending of osteosynthesis plate using 3D printed models to treat symptomatic os acromiale and acromial fracture. J Exp Orthop. 2017 Oct 24;4(1):34. https://doi.org/10.1 1B6/s40634-017-0111-7. PMID: 29067535; PMCID: PMC5655403.
  • Loomans L, Mannaerts J, Clerx S, Geuns A, Hens N, Dierickx C (2017) Pre-bending of osteosynthesis plate versus screw and cerclage fixation for os acromiale or acromion fracture: the 3D technique and mechanical testing. Tech Shoulder Elb Surg In press (TSES-17-13R1).
  • Mendes AF et al, Protocol of BRICS: Brazilian multicentric pragmatic randomised trial of surgical interventions for displaced diaphyseal clavicle fracture study: MIPO versus ORIF for the treatment of displaced midshaft clavicle fractures. BMJ Open. 2021 Oct 29;11(10):e052966. https://doi.org/10.1136/bmjopen-2021-052966. PMID: 347^^; PMCID: PMCB559127.
  • Kundangar RS, Mohanty SP, Bhat NS. Minimally invasive plate osteosynthesis (MIPO) in AO/OTA type B displaced clavicle fractures. Muscu-loskelet Surg. 2019 Aug;103(2):191-197. https://doi.org/10.1007/s12306-018-0577-1. Epub 201B Dec б. PMID: 30б19988.
  • Kim HN, Liu XN, Noh KC. Use of a real-size 3D-printed model as a preoperative and intraoperative tool for minimally invasive plating of comminuted midshaft clavicle fractures. J Orthop Surg Res. 201 б Jun 10; 10:91. https://doi.org/10.1 1B6/s1301B-016-0233-6. PMID: 2606464B; PMCID: PMC4465325.
  • Wang Q, Hu J, Guan J, Chen Y, Wang L. Proximal third humeral shaft fractures fixed with long helical PHILOS plates in elderly patients: benefit of pre-contouring plates on a 3D-printed model-a retrospective study. J Orthop Surg Res. 201B Aug 17; 13(1 ):203. https://doi.org/10. 11B6/s1301B-01B-090B-9. PMID: З0119бЗ7; PMCID: PMC609B616.
  • 4б Lauder A, Richard MJ. Management of distal humerus fractures. Eur J Orthop Surg Traumatol. 2020 JuI;30(5):745-762. https://doi.org/10.1007/s00590-020-02626-1. Epub 2020 Jan 21. PMID: 31965305.
  • Plath JE, Förch S, Haufe T, Mayr EJ. Distal Humerus Fracture in the Elderly. Z Orthop Unfall. 201B Feb;^^^-^. German. https://doi.org/10. 1066/s-0043-121B93. Epub 201B Jan 11. PMID: 293261B4.
  • Shuang F, Hu W, Shao Y, Li H, Zou H. Treatment of Intercondylar Humeral Fractures With 3D-Printed Osteosynthesis Plates. Medicine (Baltimore). 201б Jan;95(3):e2461. https://doi.org/10.1097/MD.0000000000002461. PMID: 26B17BB0; PMCID: PMC499B264.
  • Kelly J, Ladurner A, Rickman M. Surgical management of acetabular fractures - A contemporary literature review. Injury. 2020 0й;51(10):2267-2277. https://doi.org/10.1016/j.injury.2020.06.016. Epub 2020 Jun 24. PMID: 32646650.
  • Shah N, Gill IP, Hosahalli Kempanna VK, Iqbal MR. Management of acetabular fractures in elderly patients. J Clin Orthop Trauma. 2020 Nov-Dec;11(6):1061-1071. https://doi.org/10.101 б/j.jcot.2020.10.029. Epub 2020 Oct 19. Erratum in: J Clin Orthop Trauma. 2021 0Й;21:101561. PMID: 33192010; PMCID: pmc7656530.
  • Perdue PW Jr, Tainter D, Toney C, Lee C. Evaluation and Management of Posterior Wall Acetabulum Fractures. J Am Acad Orthop Surg. 2021 Nov 1;29(21):e1057-e1067. https://doi.org/10.5435/JAA0S-D-20-01301. PMID: 34323B66.
  • Maini L, Sharma A, Jha S, Sharma A, Tiwari A. Three-dimensional printing and patient-specific pre-contoured plate: future of acetabulum fracture fixation? Eur J Trauma Emerg Surg. 201B Aph44(2):215-224. https://doi.org/10.1007/s0006B-016-073B-6. Epub 201 б Oct 2б. PMID: 277B6634.
  • Mittwede PN, Gibbs CM, Ahn J, Bergin PF, Tarkin IS. Is Obesity Associated With an Increased Risk of Complications After Surgical Management of Acetabulum and Pelvis Fractures? A Systematic Review. J Am Acad Orthop Surg Glob Res Rev. 2021 Apr 19;5(4):e21.00058. https://doi.org/10.5435/JAA0SGlobal-D-21-00058. PMID: 33B72226; PMCID: PMCB067767.
  • Wu C, Deng J, Tan L, Hu H, Yuan D. [Effectiveness analysis of three-dimensional printing assisted surgery for unstable pelvic fracture]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2019 Apr 15;33(4):455-461. Chinese. https://doi.org/10.7507/1002-1892.201806045. PMID: 309B3194; PMCID: PMCB337171.
  • Rudran B, Little C, Wiik A, Logishetty K. Tibial Plateau Fracture: Anatomy, Diagnosis and Management. Br J Hosp Med (Lond). 2020 Oct 2;81(10):1-9. https://doi.org/10.12968/hmed.2020.0339. Epub 2020 Oct 30. PMID: 3313б91б.
  • Giordano V do Amaral NP, Koch HA, E Albuquerque RP, de Souza FS, Dos Santos Neto JF. Outcome evaluation of staged treatment for bicondylar tibial plateau fractures. Injury. 2017 Oct;48 Suppl 4:S34-S40. https://doi.org/10.1016/S0020-1383(17)30773-8. PMID: 2914б9бб.
  • McGonagle L, Cordier T, Link BC, Rickman MS, Solomon LB. Tibia plateau fracture mapping and its influence on fracture fixation. J Orthop Traumatol. 2019 Feb 2б;20(1):12. https://doi.org/10.1186/s10195-019-0519-1. PMID: 30B06B22; PMCID: PMC6391503.
  • Ramponi DR, McSwigan T. Tibial Plateau Fractures. Adv Emerg Nurs J. 2018 Jul/Sep;40(3):155-161. https://doi.org/10.1097/TME.0000000000000194. PMID: 30059369.
  • Huang H, Hsieh MF, Zhang G, Ouyang H, Zeng C, Yan B, Xu J, Yang Y, Wu Z, Huang W. Improved accuracy of 3D-printed navigational template during complicated tibial plateau fracture surgery. Australasian physical & engineering sciences in medicine. 2015 Mar 1;38(1):109-17.
  • Rammelt S, Swords MP. Calcaneal Fractures-Which Approach for Which Fracture? Orthop Clin North Am. 2021 Oct;52(4):433-450. https://doi.org/10.1016Zj.ocl.2021.05.012. Epub 2021 Jul 29. PMID: 34538353.
  • Nosewicz T, Knupp M, Barg A, Maas M, Bolliger L, Goslings JC, Hintermann B. Mini-open sinus tarsi approach with percutaneous screw fixation of displaced calcaneal fractures: a prospective computed tomography-based study. Foot Ankle Int. 2012 Nov;33(11):925-33. https://doi.org/10.3113/FAI.2012.0925. PMID: 23131437.
  • Feng Y, Shui X, Wang J, Cai L, Yu Y, Ying X, Kong J, Hong J. Comparison of percutaneous cannulated screw fixation and calcium sulfate cement grafting versus minimally invasive sinus tarsi approach and plate fixation for displaced intra-articular calcaneal fractures: a prospective randomized controlled trial. BMC Musculoskelet Disord. 2016 Jul 15;17:288. https://doi.org/10.1186/s12891-016-1122-8. PMID: 27422705; PMCID: PMC4946135.
  • Chung KJ, Hong DY, Kim YT, Yang I, Park YW, Kim HN. Preshaping plates for minimally invasive fixation of calcaneal fractures using a real-size 3D-printed model as a preoperative and intraoperative tool. Foot Ankle Int. 2014 Nov;35(11):1231-6. https://doi.org/10.1177/1071100714544522. Epub 2014 Jul 22. PMID: 25053782.
  • Takao M, Hamada H, Sakai T, Sugano N. Clinical Application of Navigation in the Surgical Treatment of a Pelvic Ring Injury and Acetabular Fracture. Adv Exp Med Biol. 2018;1093:289-305. https://doi.org/10.1007/978-981-13-1396-7_22. PMID: 30306489.
  • Sánchez-Pérez C, Rodríguez-Lozano G, Rojo-Manaute J, Vaquero-Martín J, Chana-Rodríguez F. 3D surgical printing for preoperative planning of trabecular augments in acetabular fracture sequel. Injury. 2018 Sep;49 Suppl 2:S36-S43. https://doi.org/10.1016/jjnjury.2018.07.014. PMID: 30219146.
  • Chen K, Yang F, Yao S, Xiong Z, Sun T, Zhu F, Telemacque D, Drepaul D, Ren Z, Guo X. Application of computer-assisted virtual surgical procedures and three-dimensional printing of patient-specific pre-contoured plates in bicolumnar acetabular fracture fixation. Orthop Trau-matol Surg Res. 2019 Sep;105(5):877-884. https://doi.org/10.1016/j.otsr.2019.05.011. Epub 2019 Jul 9. PMID: 31300239.
  • Yu C, Yu W, Mao S, Zhang P, Zhang X, Zeng X, Han G. Traditional three-dimensional printing technology versus three-dimensional printing mirror model technology in the treatment of isolated acetabular fractures: a retrospective analysis. J Int Med Res. 2020 May;48(5):300060520924250. https://doi.org/10.1177/0300060520924250. PMID: 32466684; PMCID: PMC7263167.
  • Huang JH, Liao H, Tan XY, Xing WR, Zhou Q, Zheng YS, Cao HY, Zeng CJ. Surgical treatment for both-column acetabular fractures using pre-operative virtual simulation and three-dimensional printing techniques. Chin Med J (Engl). 2020 Feb 20;133(4):395-401. https://doi.org/10.1097/CM9.0000000000000649. PMID: 31977558; PMCID: PMC7046251.
  • Hsu CL, Chou YC, Li YT, Chen JE, Hung CC, Wu CC, Shen HC, Yeh TT. Pre-operative virtual simulation and three-dimensional printing techniques for the surgical management of acetabular fractures. Int Orthop. 2019 Aug;43(8):1969-1976. https://doi.org/10.1007/s00264-018-4111 -8. Epub 2018 Aug 20. PMID: 30128670.
  • Hung CC, Li YT, Chou YC, Chen JE, Wu CC, Shen HC, Yeh TT. Conventional plate fixation method versus pre-operative virtual simulation and three-dimensional printing-assisted contoured plate fixation method in the treatment of anterior pelvic ring fracture. Int Orthop. 2019 Feb;43(2):425-431. https://doi.org/10.1007/s00264-018-3963-2. Epub 2018 May 3. PMID: 29725736.
  • Papotto G, Testa G, Mobilia G, Perez S, Dimartino S, Giardina SMC, Sessa G, Pavone V Use of 3D printing and pre-contouring plate in the surgical planning of acetabular fractures: A systematic review. Orthop Traumatol Surg Res. 2022 Apr; 108(2): 103111. https://doi.org/10.1016/j.otsr.2021.103111. Epub 2021 Oct 11. PMID: 34648997.
  • Yammine K, Karbala J, Maalouf A, Daher J, Assi C. Clinical outcomes of the use of 3D printing models in fracture management: a meta-analysis of randomized studies. Eur J Trauma Emerg Surg. 2022 Oct;48(5):3479-3491. https://doi.org/10.1007/s00068-021-01 758-1. Epub 2021 Aug 12. PMID: 34383092.
  • Tu DP, Yu YK, Liu Z, Zhang WK, Fan X, Xu C. Three-dimensional printing combined with open reduction and internal fixation versus open reduction and internal fixation in the treatment of acetabular fractures: A systematic review and meta-analysis. Chin J Traumatol. 2021 May;24(3):159-168. https://doi.org/10.1016/j.cjtee.2021.02.007. Epub 2021 Feb 27. PMID: 33678536; PMCID: PMC8173577.
  • Macario A. What does one minute of operating room time cost? J Clin Anesth. 2010 Jun;22(4):233-6. https://doi.org/10.1016/jJclinane.2010.02.003. PMID: 20522350.
  • Shi G, Liu W, Shen Y, Cai X. 3D printing-assisted extended lateral approach for displaced intra-articular calcaneal fractures: a systematic review and meta-analysis. J Orthop Surg Res. 2021 Nov 18;16(1):682. https://doi.org/10.1186/s13018-021-02832-5. PMID: 34794479; PMCID: PMC8600868.
  • Bouabdellah M, Bensalah M, Kamoun C, Bellil M, Kooli M, Hadhri K. Advantages of three-dimensional printing in the management of acetabular fracture fixed by the Kocher-Langenbeck approach: randomised controlled trial. Int Orthop. 2022 May;46(5):1155-1163. https://doi.org/10.1007/s00264-022-05319-y. Epub 2022 Feb 1. PMID: 35103815.
Еще
Статья научная