Применение метода конечных элементов в сочетании с методом контактного слоя для определения напряженно-деформированного состояния многослойных балок

Бесплатный доступ

Разработана методика расчета многослойных балок с применением метода конечных элементов в сочетании с методом контактного слоя. Контактный слой представляет собой упругую анизотропную среду, состоящую из жестких коротких стержней, работающих только на растяжение - сжатие в вертикальном направлении и сдвиг. Контактные слои моделируют связи, посредством которых между собой взаимодействуют слои многослойных балок. Для определения напряженно-деформированного состояния балка представляется как совокупность балочных конечных элементов каждого слоя, соединенных конечными элементами контактных слоев. В качестве балочных элементов используются видоизмененные конечные элементы, у которых в качестве степеней свободы в узле выступают горизонтальные перемещения по верхней и нижней кромке, а также прогиб. Представлен пример расчета шарнирно опертой по концам трехслойной балки под действием равномерно распределенной нагрузки. Крайние слои балки выполнены из углепластика, а средний слой - из синтактика на основе стеклосфер. Расчет выполняется с учетом и без учета деформаций поперечного сдвига слоев. Разбиение балки по длине на конечные элементы принимается неравномерное со сгущением в приопорной зоне для возможности уловить краевые эффекты. Решение программно реализовано в среде MATLAB. В результате расчета установлено, что существует диапазон изменения, в котором жесткость контактных слоев не оказывает заметного влияния на прогибы конструкции. Для рассмотренного примера выявлено существенное различие в величинах максимальных перемещений, а также в характере эпюр изгибающих моментов и поперечных сил в крайних слоях при расчете с учетом и без учета деформаций поперечного сдвига. В то же время деформации поперечного сдвига не оказывают заметного влияния на напряжения в контактных слоях.

Еще

Многослойная балка, метод контактного слоя, метод конечных элементов, трансверсальная прочность, адгезия, деформации поперечного сдвига, напряженно-деформированное состояние

Короткий адрес: https://sciup.org/146282733

IDR: 146282733   |   DOI: 10.15593/perm.mech/2023.4.13

Список литературы Применение метода конечных элементов в сочетании с методом контактного слоя для определения напряженно-деформированного состояния многослойных балок

  • Лехницкий С.Г. Анизотропные пластинки. – М.: Гостехиздат, 1957. – 464 с.
  • Амбарцумян С.А. Теория анизотропных пластин. Прочность, устойчивость и колебания. – М.: Наука, 1967. – 268 с.
  • Рабинович А.Л. Введение в механику армированных полимеров. – М.: Наука, 1970. – 483 с.
  • Ржаницын А.Р. Составные стержни и пластинки. – М.: Стройиздат, 1986. – 316 с.
  • Tsybin N.Y., Turusov R.A., Andreev V.I. Comparison of creep in free polymer rod and creep in polymer layer of the layered composite // Procedia engineering. – 2016. – Vol. 153. – P. 51–58.
  • Андреев В.И., Турусов Р.А., Цыбин Н.Ю. Определение напряженно-деформированного состояния трехслойной балки с применением метода контактного слоя // Вестник МГСУ. – 2016. – № 4. – С. 17–26.
  • Andreev V.I., Turusov R.A., Tsybin N.Y. Application of the Contact Layer in the Solution of the Problem of Bending the Multilayer Beam // Procedia engineering. – 2016. – Vol. 153. – P. 59–65.
  • Андреев В.И., Турусов Р.А., Цыбин Н.Ю. Напряженное состояние слоистого композита при нормальном отрыве. Часть 1 // Научное обозрение. – 2015. – № 24. – С. 98–101.
  • Андреев В.И., Турусов Р.А., Цыбин Н.Ю. Напряженное состояние слоистого композита при нормальном отрыве. Часть 2 // Научное обозрение. – 2015. – № 24. – С. 102–106.
  • Andreev V.I., Turusov R.A., Tsybin N.Y. Long strength of layered composite under normal fracture // 5th International Conference on Advanced Design and Manufacturing Engineering. – Atlantis Press, 2015. – P. 1703–1708.
  • Андреев В.И., Цыбин Н.Ю., Турусов Р.А. Анализ краевого эффекта касательных напряжений при сдвиге двухслойной балки // Строительная механика инженерных конструкций и сооружений. – 2018. – Т. 14, № 3. – С. 180–186.
  • Turusov R.A. Elastic and thermal behavior of a layered structure I. Experiment and theory // Mechanics of Composite Materials. – 2015. – Vol. 50, № 6. – P. 801–808.
  • Турусов Р.А., Андреев В.И., Цыбин Н.Ю. Общее решение задачи об изгибе многослойной балки в рядах Фурье // Строительная механика инженерных конструкций и сооружений. – 2017. – № 4. – С. 34–42.
  • Turusov R.A. Elastic and thermal behavior of a layered structure. Part II. Calculation results and their analysis // Mechanics of Composite materials. – 2015. – Vol. 51, № 1. – P. 127–134.
  • Турусов Р.А., Андреев В.И., Цыбин Н.Ю. Композит слоистой структуры. Трансверсальная прочность и модуль Юнга // Клеи. Герметики. Технологии. – 2021. – № 8. – С. 2–11.
  • Andreev V.I., Turusov R.A., Tsybin N.Y. Application of the Contact Layer in the Solution of the Problem of Bending the Multilayer Beam // Procedia engineering. – 2016. – Vol. 153. – P. 59–65.
  • Цыбин Н. Ю., Андреев В.И., Турусов Р.А. Исследование ползучести полимеров в различных условиях деформирования // Строительная механика и расчет сооружений. – 2018. – № 3. – С. 30–35.
  • Andreev V., Turusov R., Tsybin N. The edge effects in layered beams // IOP Conference Series: Materials Science and Engineering 21, Construction – The Formation of Living Environment. – 2018. – Article 042049.
  • Турусов Р.А., Андреев В.И., Цыбин Н.Ю. Расчет двухслойной цилиндрической оболочки с применением метода контактного слоя // Механика композиционных материалов и конструкций, сложных и гетерогенных сред. – 2017. – С. 193–196.
  • Andreev V.I., Turusov R.A. Thermal strength of adhesion bond // Applied Mechanics and Materials. – Trans Tech Publications Ltd, 2014. – Vol. 670. – P. 153–157.
  • Turusov R.A., Manevich L.I. Contact-layer method in adhesive mechanics: Adhesive strength during normal detachment // Polymer Science. Series D. – 2010. – Vol. 3, № 3. – P. 159–169.
  • Фрейдин А.С., Турусов Р.А. Свойства и расчет адгезионных соединений. – М.: Химия, 1990. – 256 с.
  • Turusov R.A., Manevich L.I. Contact layer method: Determining parameters of rigidity and true strength of an adhesion bond for a contact layer // Polymer Science Series D. – 2011. – Vol. 4, № 1. – P. 1–4.
  • Турусов Р.А., Маневич Л.И. Метод контактного слоя в адгезионной механике. Одномеpные задачи. Сдвиг соединения внахлестку // Клеи. Герметики. Технологии. – 2009. – № 8. – С. 2–12.
  • Turusov R.A., Gorenberg A.Y., Yazyev B.M. Long-term normal tearing strength of adhesive bonds // Polymer Science Series D. – 2012. – Vol. 5, № 1. – P. 7–14.
  • Turusov R.A., Manevich L.I. Contact layer method in adhesive mechanics // Polymer Science. Series D. – 2010. – Vol. 3, № 1. – P. 1–9.
  • Turusov R.A., Manevich L.I. Introduction to adhesion mechanics // Polymer Science. Series D. – 2009. – Vol. 2, № 4. – P. 209–213.
  • Turusov R.A., Kuperman A.M. Elastic properties of thin adhesive interlayers // Polymer Science Series D. – 2014. – Vol. 7, № 1. – P. 1–8.
  • Chepurnenko A.S., Litvinov S.V., Yazyev S.B. Combined use of contact layer and finite-element methods to predict the longterm strength of adhesive joints in normal separation // Mechanics of Composite Materials. – 2021. – Vol. 57. – P. 349–360.
  • Meguro K., Tagel-Din H. Applied element method for structural analysis: Theory and application for linear materials // Structural engineering/earthquake engineering. Japan: Japan Society of Civil Engineers(JSCE). – 2000. – Vol. 17. – P. 21–35.
  • Chepurnenko A.S., Savchenko A.A., Chepurnenko V.S. Applied element method in the solution of plane problems in the theory of creep // Materials Physics and Mechanics. – 2019. – Vol. 42. – P. 455–460.
  • Modelling the in-plane cyclic behaviour of typical Portuguese Rubble Stone Masonry using the applied element method / S. Sharma [et al.] // Structures. – Elsevier, 2022. – Vol. 46. – P. 1224–1242.
  • Eraky A., A Mustafa S.A., Badawy M. Structural analysis using Applied Element Method: a review // The Egyptian International Journal of Engineering Sciences and Technology. – 2021. – Vol. 34, № 1. – P. 16–27.
  • Domaneschi M., Cimellaro G.P., Scutiero G. A simplified method to assess generation of seismic debris for masonry structures // Engineering Structures. – 2019. – Vol. 186. – P. 306–320.
  • Reliability of collapse simulation–Comparing finite and applied element method at different levels / C. Grunwald [et al.] // Engineering Structures. – 2018. – Vol. 176. – P. 265–278.
  • Research and practice on progressive collapse and robustness of building structures in the 21st century / J.M. Adam, F. Parisi, J. Sagaseta, X. Lu // Engineering Structures. – 2018. – Vol. 173. – P. 122–149.
  • Malomo D., Pinho R., Penna A. Using the applied element method to simulate the dynamic response of full-scale URM houses tested to collapse or near-collapse conditions // Earthquake Engineering and Structural Dynamics. – 2018. – Vol. 47. – P. 1610–1630.
  • Collapse analysis of the Polcevera viaduct by the applied element method / M. Domaneschi [et al.] //Engineering Structures. – 2020. – Vol. 214. – Article 110659.
  • Approbation of the mathematical model of adhesive strength with viscoelasticity / S. Litvinov [et al.] // Key Engineering Materials – 2019. – Vol. 816. – P. 96–101.
  • Дудаев М.А. Матрица жесткости балки Тимошенко в конечноэлементном анализе динамического поведения роторных турбомашин // Вестник Иркутского государственного технического университета. – 2014. – № 6 (89). – С. 59–65.
  • Chepurnenko V., Yazyev B., Song X. Creep calculation for a three-layer beam with a lightweight filler // MATEC Web of Conferences. – EDP Sciences, 2017. – Vol. 129. – Article 05009.
Еще
Статья научная