Применение метода PSO при решении задач распознавания образов
Автор: Чуканов С.Н., Абрамов Д.Б., Баранов С.О., Лейхтер С.В.
Журнал: Вестник Воронежского государственного университета инженерных технологий @vestnik-vsuet
Рубрика: Информационные технологии, моделирование и управление
Статья в выпуске: 4 (70), 2016 года.
Бесплатный доступ
В работе рассмотрена задача оценивания нормы расстояния между двумя замкнутыми гладкими кривыми при распознавании образов. Рассмотрены диффеоморфные преобразования кривых на основе модели больших деформаций, при этом преобразование исходных точек области в требуемые формируется на основе зависящего от времени векторного поля скоростей. Рассмотрены действия групп переноса, вращения и масштабирования на замкнутую кривую, инварианты к действию этих групп. Положение кривых нормализуется центрированием, приведением главных осей инерции изображения к осям системы координат и приведением к единице площади замкнутой кривой соответствующим масштабированием. Для оценивания нормы расстояния между двумя замкнутыми кривыми формируется функционал, соответствующий норме расстояния между двумя кривыми, и уравнение эволюции диффеоморфных преобразований. Уравнение эволюции позволяет перемещать объекты вдоль траекторий, которым соответствуют диффеоморфные преобразования. Диффеоморфизмы не изменяют топологию вдоль геодезических траекторий. В задаче неточного сравнения минимизируемый функционал содержит член, который оценивает точность попадания точек в требуемые позиции. При этом в уравнения эволюции вводится параметр дисперсии ошибки преобразования. Предложен алгоритм решения уравнения диффеоморфного преобразования, построенный на основе метода PSO, который позволяет значительно сократить объем вычислительных операций по сравнению с градиентными методами решения. Разработанные в работе алгоритмы могут использоваться в биоинформатике и биометрических системах, классификации изображений и объектов, системах машинного зрения, нейровизуализации, при распознавании образов и объектов, системах трекинга. Алгоритм оценивания нормы расстояния между замкнутыми кривыми методом диффеоморфного преобразования может быть распространён на пространственные объекты (кривые, поверхности, многообразия).
Инвариантность, диффеоморфные преобразования, метод pso, распознавание образов, машинное зрение, биоинформатика
Короткий адрес: https://sciup.org/140229708
IDR: 140229708 | DOI: 10.20914/2310-1202-2016-4-94-99
Список литературы Применение метода PSO при решении задач распознавания образов
- Beg M.F. et al. Computing large deformation metric mappings via geodesic flows of diffeomorphisms//International journal of computer vision. 2005. V. 61. №. 2. P. 139-157.
- Чуканов С.Н. Преобразование Фурье функции трехмерного изображения, инвариантное к действию групп вращения и переноса//Автометрия. 2008. Т. 44. №. 3. С. 80-87
- Baker A. Matrix groups: An introduction to Lie group theory. Springer Science & Business Media, 2012.
- Arnold V.I., Khesin B.A. Topological methods in hydrodynamics. Springer Science & Business Media, 1998.
- Holm D.D. et al. Geometric mechanics and symmetry: from finite to infinite dimensions. London: Oxford University Press, 2009.
- Miller M.I., Trouve A., Younes L. Geodesic shooting for computational anatomy//Journal of mathematical imaging and vision. 2006. V. 24. №. 2. P. 209-228
- Bruveris M., Holm D.D. Geometry of image registration: The diffeomorphism group and momentum maps//Geometry, Mechanics, and Dynamics. 2015. P. 19-56
- Kennedy J. et al. Swarm intelligence. Morgan Kaufmann, 2001.
- Yang X.S. Nature-inspired optimization algorithms. Elsevier, 2014.
- Карпенко А.П. Современные алгоритмы поисковой оптимизации. М.: Издательство МГТУ им. Н.Э. Баумана, 2014.