Применение обученных на оптических изображениях свёрточных нейронных сетей для обнаружения объектов на радиолокационных изображениях
Автор: Павлов Виталий Александрович, Белов Андрей Александрович, Волвенко Сергей Валентинович, Рашич Андрей Валерьевич
Журнал: Компьютерная оптика @computer-optics
Рубрика: Обработка изображений, распознавание образов
Статья в выпуске: 2 т.48, 2024 года.
Бесплатный доступ
В связи с малым количеством размеченных наборов данных радиолокационных изображений перспективным представляется использование оптических изображений для обучения нейронных сетей, предназначенных для обнаружения объектов на радиолокационных изображениях. Однако оптические изображения имеют ряд существенных отличий от радиолокационных изображений, что приводит к необходимости более глубокого экспериментального исследования вопроса. В работе была исследована применимость такого подхода и показано, что в случае задачи обнаружения кораблей достижимы высокие результаты. Кроме того, показано, что предварительная фильтрация спекл-шума позволяет дополнительно улучшить ситуацию.
Спекл-шум, рли, рса, фильтрация шума, обработка изображений, ssim, gmsd, обнаружение объектов
Короткий адрес: https://sciup.org/140303302
IDR: 140303302 | DOI: 10.18287/2412-6179-CO-1316
Список литературы Применение обученных на оптических изображениях свёрточных нейронных сетей для обнаружения объектов на радиолокационных изображениях
- Pavlov VA, Belov AA, Tuzova AA. Implementation of synthetic aperture radar processing algorithms on the Jetson TX1 platform. IEEE Int Conf on Electrical Engineering and Photonics (EExPolytech) 2019: 90-93.
- Ozdemii C. Inverse synthetic aperture radar imaging with MATLAB algorithms. Hoboken, NJ: John Wiley & Sons Inc; 2012.
- Dhillon A, Verma G. Convolutional neural network: a review of models, methodologies and applications to object detection. Prog Artif Intell 2020; 9: 85-112.
- Sultana F, Sufian A, Dutta P. A review of object detection models based on convolutional neural network. In Book: Mandal JK, Banerjee S, eds. Intelligent computing: Image processing based applications. Singapore: Nature Singa-pore Pte Ltd; 2020. DOI: 10.1007/978-981-15-4288-6_1.
- Galvez R, Bandala A, Dadios E, Vicerra R, Maningo J. Object detection using convolutional neural networks. IEEE Region 10 Conf (TENCON 2018) 2018: 2023-2027.
- Profeta A, Rodriguez A, Clouse HS. Convolutional neural networks for synthetic aperture radar classification. Proc SPIE 2016; 9843: 98430M.
- Zhao P, Liu K, Zou H, Zhen X. Multi-stream convolutional neural network for SAR automatic target recognition. Remote Sens 2018; 10(9): 1473.
- Fursov V, Zherdev D, Kazanskiy N. Support subspaces method for synthetic aperture radar automatic target recognition. International Journal of Advanced Robotic Systems; 2016; 13(5): 1-11. DOI: 10.1177/1729881416664848.
- Pavlov V, Tuzova A, Belov A, Matveev Y. An automated method for finding the optimal parameters of adaptive filters for speckle denoising of SAR images. Computer Optics 2022; 46(6): 914-920. DOI: 10.18287/2412-6179-CO-1132.
- Belov AA, Pavlov VA, Tuzova AA. A method of finding optimal parameters of speckle noise reduction filters. internet of things, smart spaces, and next generation networks and systems. Cham: Springer International Publishing; 2020: 133-141.
- Gonzalez R, Woods R. Digital image processing. 2nd ed. Prentice Hall; 2002.
- Lee JS. Digital image enhancement and noise filtering by using local statistics. IEEE Trans Pattern Anal Mach Intell 1980; PAMI-2(2): 165-168.
- Frost V, Stiles J, Shanmugan K, Holtzman J. A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans Pattern Anal Mach Intell 1982, PAMI-4(2): 157-166.
- Kuan D, Sawchuk A, Strand T, Chavel P. Adaptive restoration of images with speckle. IEEE Trans Acoust Speech Signal Process 1987; 25(3): 373-383.
- Tomasi C, Manduchi R. Bilateral filtering for gray and color images. Sixth Int Conf on Computer Vision (IEEE Cat. No.98CH36271) 1998: 839-846.
- Lopes A, Nezry E, Touzi R, Laur H. Structure detection and statistical adaptive speckle filtering in SAR images. Int J Remote Sens 1993; 14(9): 1735-1758.
- Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 1990; 12(7): 629-639.
- Chernoff H, Lehmann EL. The use of maximum likelihood estimates in χ2 tests for goodness of fit. In Book: Rojo J, ed. Selected works of E. L. Lehmann. Springer Science+Business Media; 2012: 541-549.
- Pearson K. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. In Book: Kotz S, Johnson NL, eds. Breakthroughs in statistics. Volume II: Methodology and distribution. New York, NY: Springer-Verlag; 1992: 11-28.
- Goodfellow I, Bengio Y, Courville A. Deep learning. The MIT Press; 2016.
- Haykin S. Neural networks: A comprehensive foundation. 2nd ed. Prentice Hall PTR USA; 1998.
- Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: Unified, real-time object detection. IEEE Conf on Computer Vision and Pattern Recognition (CVPR) 2016: 779-788.
- Redmon J, Farhadi A. YOLO9000: better, faster, stronger. IEEE Conf on Computer Vision and Pattern Recognition (CVPR) 2017: 6517-6525.
- Lin M, Chen Q, Yan S, Network in network. arXiv Preprint. 2013. Source: https://arxiv.org/abs/1312.4400.
- Redmon J, Farhadi A. YOLOv3: An incremental improvement. arXiv Preprint. 2018. Source: http://arxiv.org/abs/1804.02767.
- Wei S, Zeng X, Qu Q, Wang M, Su H, Shi J. HRSID: A high-resolution SAR images dataset for ship detection and instance segmentation. IEEE Access 2020; 8: 120234-120254