Применение технологии Fc-слияния белков для разработки вакцин против инфекционных болезней животных и человека

Автор: Каторкина Е.И., Цыбанов С.Ж., Малоголовкин А.С.

Журнал: Сельскохозяйственная биология @agrobiology

Рубрика: Обзоры, проблемы

Статья в выпуске: 4 т.54, 2019 года.

Бесплатный доступ

Основные требования к современным вакцинным препаратам - эффективность, надежность и отсутствие побочных действий (безвредность). Повышение требований к безопасности и чистоте препаратов стимулировало как развитие традиционных препаратов, так и создание искусственных вакцин нового поколения - субъединичных, рекомбинантных, антиидиотипических, ДНК-вакцин и др. Технология получения рекомбинантных белков доказала свое преимущество при разработке широкого спектра терапевтических и лечебных препаратов против инфекционных болезней человека и животных (S. Khan с соавт., 2016). В 2011 году создано шесть лекарственных препаратов на основе технологии Fc-фьюжирования белков. Большинство этих Fc-химерных протенинов влияют на рецептор-лигандные взаимодействия как антагонисты, либо блокирующие связывание рецептора, например ЭнбрелÒ (этанерцепт; «Amgen», США), ЗалтрапÒ (афлиберцепт; «Sanofi», Франция), АркалистÒ (рилонацепт; «Regeneron», США), либо прямо стимулирующие рецепторную функцию, вызывающие снижение (АмевивÒ - алефацепт; «Astellas», США) или повышение (ЭнплейтÒ - ромиплостим; «Amgen», США) активности иммунного ответа...

Еще

Fc-фрагмент, вирус иммунодефицита человека, вирус эбола, вирус гриппа, туберкулез, вирус классической чумы свиней, вирус африканской чумы свиней, вакцинация

Короткий адрес: https://sciup.org/142222182

IDR: 142222182   |   DOI: 10.15389/agrobiology.2019.4.642rus

Список литературы Применение технологии Fc-слияния белков для разработки вакцин против инфекционных болезней животных и человека

  • Institute of Medicine (US) Committee to Study Priorities for Vaccine Development. Progress in vaccine development. In: Vaccines for the 21st century: a tool for decisionmaking /K.R. Stratton, J.S. Durch, R.S. Lawrence (eds.). The National Academies Press, Washington, DC, 2000: 17-38 ( ). DOI: 10.17226/5501
  • Shen A.K., Cooke M.T. Infectious disease vaccines. Nature Reviews Drug Discovery, 2018, 18: 169-170 ( ). DOI: 10.1038/d41573-018-00011-6
  • Dellepiane N., Griffiths E., Milstien J.B. New challenges in assuring vaccine quality. Bulletin of the World Health Organization: the International Journal of Public Health, 2000, 78(2): 155-162.
  • Odir S., Dellagostin A. The development of veterinary vaccines: a review of traditional methods and modern biotechnology approaches. Biotechnology Research and Innovation, 2017, 1(1): 6-13 ( ). DOI: 10.1016/j.biori.2017.10.001
  • Cantas L., Suer K. Review: The important bacterial zoonoses in "one health" concept. Frontiers in Public Health, 2014, 2: 114 ( ). DOI: 10.3389/fpubh.2014.00144
  • Arias M., de la Torre A., Dixon L., Gallardo C., Jori F., Laddomada A., Martins C., Parkhouse R.M., Revilla Y., Rodriguez F., Sanchez-Vizcaino J.-M. Approaches and perspectives for development of African swine fever virus Vaccines. Vaccines, 2017, 5(4): 35 ( ).
  • DOI: 10.3390/vaccines5040035
  • Burmakina, G, Malogolovkin, A., Tulman, E.R., Zsak, L., Delhon, G., Diel D.G. Shobogoro N.M, Morgunov Y.P., Morgunov S.Y., Kolbasov D., Rock D. African swine fever virus serotype-specific proteins are significant protective antigens for African swine fever. Journal of General Virology, 2016, 97(7): 1670-1675 ( ).
  • DOI: 10.1099/jgv.0.000490
  • Середа А.Д., Иматдинов А.Р., Дубровская О.А., Колбасов Д.В. Механизмы иммунной защиты и перспективы создания ДНК-вакцин против африканской чумы свиней. Сельскохозяйственная биология, 2017, 52(6): 1069-1082 ( ).
  • DOI: 10.15389/agrobiology.2017.6.1069rus
  • Khan S., Ullah M.V, Siddique R., Nabi G., Manan S., Yousaf M., Hou R. Role of recombinant DNA technology to improve life. International Journal of Genomics, 2016, 2016: Article ID 2405954 ( ).
  • DOI: 10.1155/2016/2405954
  • Pechtner V., Karanikas C.A., García-Pérez L.E., Glaesner W. A new approach to drug therapy: Fc-fusion technology. Primary Health Care, 2017, 7: 255 ( ).
  • DOI: 10.4172/2167-1079.1000255
  • Strohl W.R. Fusion proteins for half-life extension of biologics as a strategy to make Biobetters. BioDrugs, 2015, 29(4): 215-239 ( ).
  • DOI: 10.1007/s40259-015-0133-6
  • Chen X., Zaro J., Shen W.C. Fusion protein linkers: effects on production, bioactivity, and pharmacokinetics. Advanced Drug Delivery Reviews, 2013, 65(10): 1357-1369 ( ).
  • DOI: 10.1016/j.addr.2012.09.039
  • Unverdorben F., Richter F., Hutt M., Seifert O., Malinge P., Fischer N., Kontermann R.E. Pharmacokinetic properties of IgG and various Fc fusion proteins in mice. MAbs, 2016, 8(1): 120-128 ( ).
  • DOI: 10.1080/19420862.2015.1113360
  • Levin D., Golding B., Strome S.E. Fc fusion as a platform technology: potential for modulating immunogenicity. Trends in Biotechnology, 2015, 33(1): 27-34 ( ).
  • DOI: 10.1016/j.tibtech.2014.11.001
  • Звонова Е.А., Тюрин А.А., Соловьев А.А., Голденкова-Павлова И.В. Стратегии к модуляции фармакокинетики рекомбинантных терапевтических белков. Успехи современной биологии, 2017, 4(137): 398-419 ( ).
  • DOI: 10.7868/S004213241704007X
  • Czajkowsky D.M., Hu J., Shao Z., Pleass R.J. Fc-fusion proteins: new developments and future perspectives. EMBO Molecular Medicine, 2012, 4(10): 1015-1028 ( ).
  • DOI: 10.1002/emmm.201201379
  • Nelson A., Reichert J. Development trends for therapeutic antibody fragments. Nature Biotechnology, 2009, 27(4): 331-337 ( ).
  • DOI: 10.1038/nbt0409-331
  • Strohl W.R. Optimization of Fc-mediated effector functions of monoclonal antibodies. Current Opinion in Biotechnology, 2009, 20(6): 685-691 ( ).
  • DOI: 10.1016/j.copbio.2009.10.011
  • Strohl W.R., Knight D.M. Discovery and development of biopharmaceuticals: current issues. Current Opinion in Biotechnology, 2009, 20(6): 668-672 ( ).
  • DOI: 10.1016/j.copbio.2009.10.012
  • Reichert J. Antibody-based therapeutics to watch in 2011. MAbs, 2011, 3(1): 76-99 ( ).
  • DOI: 10.4161/mabs.3.1.13895
  • Beck A., Reichert J. Therapeutic Fc-fusion proteins and peptides as successful alternatives to antibodies. MAbs, 2011, 3(5): 415-416 ( ).
  • DOI: 10.4161/mabs.3.5.17334
  • Dumont J., Low S., Peters R., Bitonti A. Monomeric Fc fusions: impact on pharmacokinetic and biological activity of protein therapeutics. BioDrugs, 2006, 20(3): 151-160 ( ).
  • DOI: 10.2165/00063030-200620030-00002
  • Ye L, Zeng R., Bai Y., Roopenian D.C., Zhu X. Efficient mucosal vaccination mediated by the neonatal Fc receptor. Nature Biotechnology, 2011, 29(2): 158-163 ( ).
  • DOI: 10.1038/nbt.1742
  • Congy-Jolivet N., Probst A., Watier H., Thibault G. Recombinant therapeutic monoclonal antibodies: mechanisms of action in relation to structural and functional duality. Critical Reviews in Oncology/Hematology, 2007, 64(3): 226-233 ).
  • DOI: 10.1016/j.critrevonc.2007.06.013
  • Curtis J., Bourne F.J. Half-lives of immunoglobulins IgG, IgA and IgM in the serum of new-born pigs. Immunology, 1973, 24(1): 147-155.
  • Rath T., Baker K., Dumont J.A., Peters R.T., Jiang H., Qiao S.W., Lencer W.I., Pierce G.F., Blumberg R.S. Fc-fusion proteins and FcRn: structural insights for longer-lasting and more effective therapeutics. Current Opinion in Biotechnology, 2015, 35(2): 235-254 ( ).
  • DOI: 10.3109/07388551.2013.834293
  • Ghose S., Hubbard B., Cramer S.M. Binding capacity differences for antibodies and Fc-fusion proteins on protein A chromatographic materials. Biotechnology and Bioengineering, 2007, 96(4): 768-779 ( ).
  • DOI: 10.1002/bit.21044
  • Li F., Ravetch J.V. Inhibitory Fcγ receptor engagement drives adjuvant and anti-tumor activities of agonistic CD40 antibodies. Science, 2011, 333(6045): 1030-1034 ( ).
  • DOI: 10.1126/science.1206954
  • Stapleton N.M., Andersen J.T., Stemerding A.M., Bjarnarson S.P., Verheul R.C., Gerritsen J., Zhao Y., Kleijer M., Sandlie I., de Haas M., Jonsdottir I., van der Schoot C.E., Vidarsson G. Competition for FcRn-mediated transport gives rise to short half-life of human IgG3 and offers therapeutic potential. Nature Communications, 2011, 2: 599 ( ).
  • DOI: 10.1038/ncomms1608
  • Capon D.J., Chamow S.M., Mordenti J., Marsters S.A., Gregory T., Mitsuya H., Byrn R.A., Lucas C., Wurm F.M., Groopman J.E. Designing CD4 immunoadhesins for AIDS therapy. Nature, 1989, 337(6207): 525-531 ( ).
  • DOI: 10.1038/337525a0
  • Ratcliff A., Arts E. HIV-1 entry, inhibitors, and resistance. Viruses, 2010, 2(5): 1069-1105 ( ).
  • DOI: 10.3390/v2051069
  • Dennison S., Anasti K., Jaeger F. et al. Vaccine-induced HIV-1 envelope gp120 constant region 1-specific antibodies expose a CD4-inducible epitope and block the interaction of HIV-1 gp140 with galactosylceramide. Journal of Virology, 2014, 88(16): 9406-9417 ( ).
  • DOI: 10.1128/JVI.01031-14
  • Feldmann H., Geisbert T.W. Ebola haemorrhagic fever. Lancet, 2011, 377(9768): 849-862 ( ).
  • DOI: 10.1016/S0140-6736(10)60667-8
  • Henao-Restrepo A.M., Camacho A., Longini I. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial. Lancet, 2017, 389(10068): 505-518 ( ).
  • DOI: 10.1016/S0140-6736(16)32621-6
  • Towner J.S., Sealy T.K., Khristova M.L., Albariño C.G., Conlan S., Reeder S.A., Quan P.L., Lipkin W.I., Downing R., Tappero J.W., Okware S., Lutwama J., Bakamutumaho B., Kayiwa J., Comer J.A., Rollin P.E., Ksiazek T.G., Nichol S.T. Newly discovered Ebola virus associated with hemorrhagic fever outbreak in Uganda. PLoS Pathogens, 2008, 4(11): e1000212 ( ).
  • DOI: 10.1371/journal.ppat.1000212
  • Konduru K., Bradfute S.B., Jacques J., Manangeeswaran M., Nakamura S., Morshed S., Wood S.C., Bavari S., Kaplan G.G. Ebola virus glycoprotein Fc fusion protein confers protection against lethal challenge in vaccinated mice. Vaccine, 2011, 29(16): 2968-2977 ( ).
  • DOI: 10.1016/j.vaccine.2011.01.113
  • Jeffers S., Sanders D., Sanchez A. Covalent modifications of the Ebola virus glycoprotein. Journal of Virology, 2002, 76(24): 12463-12472 ( ).
  • DOI: 10.1128/JVI.76.24.12463-12472.2002
  • Takada A., Robison C., Goto H., Sanchez A., Murti K.G., Whitt M.A., Kawaoka Y. A system for functional analysis of Ebola virus glycoprotein. PNAS USA, 1997, 94(26): 14764-14769 ( ).
  • DOI: 10.1073/pnas.94.26.14764
  • Jones S.M., Feldmann H., Ströher U., Geisbert J.B., Fernando L., Grolla A., Klenk H.D., Sullivan N.J., Volchkov V.E., Fritz E.A., Daddario K.M., Hensley L.E., Jahrling P.B., Geisbert T.W. Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nature Medicine, 2005, 11(7): 786-790 ( ).
  • DOI: 10.1038/nm1258
  • Sullivan N.J., Geisbert T.W., Geisbert J.B., Xu L., Yang Z.Y., Roederer M., Koup R.A., Jahrling P.B., Nabel G.J. Accelerated vaccination for Ebola virus haemorrhagic fever in non-human primates. Nature, 2003, 424(6949): 681-684 ( ).
  • DOI: 10.1038/nature01876
  • Du L., Leung V.H., Zhang X., Zhou J., Chen M., He W., Zhang H.Y., Chan C.C., Poon V.K., Zhao G., Sun S., Cai L., Zhou Y., Zheng B., Jiang S. A recombinant vaccine of H5N1 HA1 fused with foldon and human IgG Fc induced complete cross-clade protection against divergent H5N1 viruses. PLoS ONE, 2011, 6(1): e16555 ( ).
  • DOI: 10.1371/journal.pone.0016555
  • Price G.E., Soboleski M.R., Lo C.Y., Misplon J.A., Pappas C., Houser K.V., Tumpey T.M., Epstein S.L. Vaccination focusing immunity on conserved antigens protects mice and ferrets against virulent H1N1 and H5N1 influenza A viruses. Vaccine, 2009, 27(47): 6512-6521 ( ).
  • DOI: 10.1016/j.vaccine.2009.08.053
  • Loureiro S., Ren J., Phapugrangkul P., Colaco C., Bailey C., Shelton H., Molesti E., Temperton N., Barclay W., Jones I. Adjuvant-free immunization with hemagglutinin-Fc fusion proteins as an approach to influenza vaccines. Journal of Virology, 2011, 85(6): 3010-3014 ( ).
  • DOI: 10.1128/JVI.01241-10
  • Bernard H.U., Burk R.D., Chen Z., van Doorslaer K., zur Hausen H., de Villiers E.M. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology, 2010, 401(1): 70-79 ( ).
  • DOI: 10.1016/j.virol.2010.02.002
  • Chen X., Liu H., Zhang T., Liu Y., Xie X., Wang Z., Xu X. A vaccine of L2 epitope repeats fused with a modified IgG1 Fc induced cross-neutralizing antibodies and protective immunity against divergent human papillomavirus types. PLoS ONE, 2014, 9(5): e95448 ( ).
  • DOI: 10.1371/journal.pone.0095448
  • Kemp T.J, Hildesheim A., Safaeian M., Dauner J.G., Pan Y., Porras C., Schiller J.T., Lowy D.R., Herrero R., Pinto L.A. HPV16/18 L1 VLP Vaccine induces cross-neutralizing antibodies that may mediate cross-protection. Vaccine, 2011, 29(11): 2011-2024 ( ).
  • DOI: 10.1016/j.vaccine.2011.01.001
  • Alphs H.H., Gambhira R., Karanam B., Roberts J.N., Jagu S., Schiller J.T., Zeng W., Jackson D.C., Roden R.B. Protection against heterologous human papillomavirus challenge by a synthetic lipopeptide vaccine containing a broadly cross-neutralizing epitope of L2. PNAS USA, 2008, 105(15): 5850-5855 ( ).
  • DOI: 10.1073/pnas.0800868105
  • Khiavi F., Arashkia A., Golkar M., Nasimi M., Roohvand F., Azadmanesh K. A dual-type L2 11-88 peptide from HPV types 16/18 formulated in Montanide ISA 720 induced strong and balanced Th1/Th2 immune responses, associated with high titers of broad spectrum cross-reactive antibodies in vaccinated mice. Journal of Immunology Research, 2018: 9464186 ( ).
  • DOI: 10.1155/2018/9464186
  • Global Tuberculosis Report 2018. World Health Organization, Geneva, 2018. Режим доступа: http://www.unaids.org/ru/resources/presscentre/featurestories/2018/september/tb-and-hiv. Без даты.
  • Soleimanpour S., Farsiani H., Mosavat A., Ghazvin K., Eydgahi M., Sankian M., Sadeghian H., Meshkat Z., Rezaee1 S.A. APC targeting enhances immunogenicity of a novel multistage Fc-fusion tuberculosis vaccine in mice. Applied Microbiology and Biotechnology, 2015, 99: 10467-10480 ( ).
  • DOI: 10.1007/s00253-015-6952-z
  • O’Garra A., Redford P.S., McNab F.W., Bloom C.I., Wilkinson R.J., Berry M.P. The immune response in tuberculosis. Annual Review of Immunology, 2013, 31: 475-527 ( ).
  • DOI: 10.1146/annurev-immunol-032712-095939
  • Ohara N. Current status of tuberculosis and recombinant bacillus Calmette-Guérin vaccines. Journal of Oral Biosciences, 2012, 54(2): 92-95 ( ).
  • DOI: 10.1016/j.job.2012.04.002
  • Xin Q., Niu H., Li Z., Zhang G., Hu L., Wang B., Li J., Yu H., Liu W., Wang Y., Da Z., Li R., Xian Q., Wang Y., Zhang Y., Jing T., Ma X. Zhu B. Subunit vaccine consisting of multi-stage antigens has high protective efficacy against Mycobacterium tuberculosis infection in mice. PLoS ONE, 2013, 8(8): e72745 ( ).
  • DOI: 10.1371/journal.pone.0072745
  • Jee B., Singh Y., Yadav R., Lang F. Small heat shock protein 16.3 of Mycobacterium tuberculosis: after two decades of functional characterization. Cellular Physiology and Biochemistry, 2018, 49(1): 368-380 ( ).
  • DOI: 10.1159/000492887
  • Taylor J.L., Wieczorek A., Keyser A.R., Grover A., Flinkstrom R., Karls R.K., Bielefeldt-Ohmann H., Dobos K.M., Izzo A.A. HspX-mediated protection against tuberculosis depends on its chaperoning of a mycobacterial molecule. Immunology and Cell Biology, 2012, 90(10): 945-954 ( ).
  • DOI: 10.1038/icb.2012.34
  • Bhatt S., Gething P.W., Brady O.J., Messina J.P., Farlow A.W., Moyes C.L., Drake J.M., Brownstein J.S., Hoen A.G., Sankoh O., Myers M.F., George D.B., Jaenisch T., Wint G.R., Simmons C.P., Scott T.W., Farrar J.J., Hay S.I. The global distribution and burden of Dengue. Nature, 2013, 496(7446): 504-507 ( ).
  • DOI: 10.1038/nature12060
  • Pigmented ethnic skin and imported dermatoses: a text-atlas /C. Orfanos, C. Zouboulis, C. Assaf (eds.). Springer International Publishing, 2018 ( ).
  • DOI: 10.1007/978-3-319-69422-1
  • Kim M.Y., Copland A., Nayak K., Chandele A., Ahmed M.S., Zhang Q., Diogo G.R., Paul M.J., Hofmann S., Yang M.S., Jang Y.S., Ma J.K., Reljic R. Plant expressed Fc-fusion protein tetravalent Dengue vaccine with inherent adjuvant properties. Plant Biotechnology Journal, 2018, 16(7): 1283-1294 ( ).
  • DOI: 10.1111/pbi.12869
  • Brewoo J.N., Kinney R.M., Powell T.D., Arguello J.J., Silengo S.J., Partidos C.D., Huang C.Y., Stinchcomb D.T., Osorio J.E. Immunogenicity and efficacy of chimeric Dengue Vaccine (DENVax) formulations in interferon-deficient AG129 mice. Vaccine, 2012, 30(8): 1513-1520 ( ).
  • DOI: 10.1016/j.vaccine.2011.11.072
  • Kim M.Y., Van Dolleweerd C., Copland A., Paul M.J., Hofmann S., Webster G.R., Julik E., Ceballos-Olvera I., Reyes-Del Valle J., Yang M.S., Jang Y.S., Reljic R., Ma J.K. Molecular engineering and plant expression of an immunoglobulin heavy chain scaffold for delivery of a Dengue vaccine candidate. Plant Biotechnology Journal, 2017, 15(12): 1590-1601 ( ).
  • DOI: 10.1111/pbi.12741
  • De Alwis R., Smith S.A., Olivarez N.P., Messer W.B., Huynh J.P., Wahala W.M., White L.J., Diamond M.S., Baric R.S., Crowe J.E., de Silva A.M. Identification of human neutralizing antibodies that bind to complex epitopes on Dengue virions. PNAS USA, 2012, 109(19): 7439-7444 ( ).
  • DOI: 10.1073/pnas.1200566109
  • Kim M.Y., Kim B.Y., Oh S.M., Reljic R., Jang Y.S., Yang M.S. Oral immunization of mice with transgenic rice calli expressing cholera toxin B subunit fused to consensus Dengue cEDIII antigen induces antibodies to all four Dengue serotypes. Plant Biotechnology Journal, 2016, 92(3): 347-356 ( ).
  • DOI: 10.1007/s11103-016-0517-0
  • Tripathi N.K., Shrivastava A. Recent developments in recombinant protein-based Dengue vaccines. Frontiers in Immunology, 2018, 9: 1919 ( ).
  • DOI: 10.3389/fimmu.2018.01919
  • Ji W., Guo Z., Ding N.Z., He C.Q. Studying classical swine fever virus: making the best of a bad virus. Virus Research, 2015, 197: 35-47 ( ).
  • DOI: 10.1016/j.virusres.2014.12.006
  • Liu Z., Liu Y., Zhang Y., Yang Y., Ren J., Zhang X., Du E. Surface displaying of swine IgG1 Fc enhances baculovirus-vectored vaccine efficacy by facilitating viral complement escape and mammalian cell transduction. Veterinary Research, 2017, 48(1): 29 ( ).
  • DOI: 10.1186/s13567-017-0434-5
  • Martyn J.C., Cardin A.J., Wines B.D., Cendron A., Li S., Mackenzie J., Powell M., Gowans E.J. Surface display of IgG Fc on baculovirus vectors enhances binding to antigen-presenting cells and cell lines expressing Fc receptors. Archives of Virology, 2009, 154(7): 1129-1138 ( ).
  • DOI: 10.1007/s00705-009-0423-8
  • Renson P., Le Dimna M., Keranflech A., Cariolet R., Koenen F., Le Potier M-F. CP7_E2alf oral vaccination confers partial protection against early classical swine fever virus challenge and interferes with pathogeny-related cytokine responses. Veterinary Research, 2013, 44(1): 9 ( ).
  • DOI: 10.1186/1297-9716-44-9
  • Nascimento I.P., Leite L.C.C. Recombinant vaccines and the development of new vaccine strategies. Brazilian Journal of Medical and Biological Research, 2012, 45(12): 1102-1111 ( ).
  • DOI: 10.1590/S0100-879X2012007500142
Еще
Статья обзорная