Применение ультразвука при синтезе железоалюмосиликатного катализатора

Автор: Дашинамжилова Эльвира Цыреторовна

Журнал: Вестник Бурятского государственного университета. Философия @vestnik-bsu

Рубрика: Химия

Статья в выпуске: 3, 2013 года.

Бесплатный доступ

Получены железоалюмосиликатные материалы из бентонитовой глины и комплексов железа с применением ультразвука на различных стадиях синтеза. Образцы материалов, при синтезе которых обработке ультразвуком подвергалась исходная суспензия глины, являются каталитически активными в окислении фенола пероксидом водорода и стабильными к вымыванию катионов железа в водные растворы.

Ультразвук, фенол, каталитическое окисление, пероксид водорода, железоалюмосили-катные материалы

Короткий адрес: https://sciup.org/148181815

IDR: 148181815

Текст научной статьи Применение ультразвука при синтезе железоалюмосиликатного катализатора

E.Ts. Dashinamzhilova

APPLICATION OF ULTRASOUND IN SYNTHESIS OF IRONALUMINOSILICATE CATALYST

Ironaluminosilicate materials are obtained from bentonite clay and iron complexes with ultrasound treatment at different stages of synthesis. The samples of materials, which initial suspension of clay at synthesis has been subjected to sonication, are catalytically active in phenol oxidation by hydrogen peroxide and stable to leaching of iron cations in aqueous solutions.

Одним из средств активного воздействия на тепло- и массообменные процессы, на скорость и степень протекания химических реакций в жидкости, а также на структуру и свойства твердых тел являются ультразвуковые колебания (УЗ). Применение ультразвука при производстве различных материалов, в том числе и наноматериалов, приводит к многочисленным положительным эффектам. Воздействие ультразвука связано в первую очередь с развитием эффекта акустической кавитации, возникающей в среде при распространении ультразвука. Акустическая кавитация представляет собой эффективное средство концентрации энергии звуковой волны, обусловленной пульсациями и схлопыванием кавитационных пузырьков [1]. Взрывы пузырьков приводят к появлению в жидкости потоков, скорость которых может достигать 150 м/с [2]. Скорость протекания большинства гетерогенных процессов в обычных условиях очень мала и определяется величиной поверхности соприкосновения реагирующих компонентов. УЗ колебания обеспечивают сверхтонкое диспергирование (не реализуемое другими способами), увеличивая межфазную поверхность (66.0%) реагирующих элементов [3]. При производстве наноматериалов ультразвуковые колебания могут применяться при синтезе и осаждении наночастиц, а также для разрушения крупных агломератов и диспергирования наночастиц в жидкости.

Цель данной работы – получение железоалюмосиликатного материала с применением ультразвука и изучение его физико-химических свойств.

Экспериментальная часть

Для получения железоалюмосиликатного материала использовали бентонитовую глину, в которой содержание монтмориллонита составляло 80%. Наряду с основными компонентами SiO 2 (66.0%) и Al 2 O 3 (13.5%) в глине присутствовали оксиды щелочных и щелочноземельных металлов и оксиды железа (менее 2%). Также в глине были обнаружены оксиды Ti4+, P5+, Mn2+, суммарное количество которых не превышало 0.22%.

В качестве источника ультразвуковых волн в жидкой среде использовался ультразвуковой диспергатор УЗДН-2Т. При обработке поддерживались постоянными значения оптимальной резонансной частоты излучателя – 22±1.65 кГц и электрической мощности УЗ-генератора – 400 Вт, время воздействия – 5 мин.

Содержание железа в полученных материалах определялось фотометрическим методом по реакции с орто-фенантролином [4] после выдерживания образца в концентрированной соляной кислоте в течение суток. Удельную поверхность (S уд ) материалов определяли по низкотемпературной адсорбции азота на приборе «Термосорб LP». Окисление фенола проводили в водном растворе в термостатированном реакторе (t=50oС) при интенсивном перемешивании на магнитной мешалке. Реакцию проводили при условиях: [С 6 Н 5 ОН]=1∙10-3 моль∙л-1; [Н 2 О 2 ]=1,4∙10-3 моль∙л-1; [катализатор]=1 г/л; рН 5.6. Концентрацию фенола определяли по спектрам поглощения реакционной смеси в процессе окисления фенола. Спектры поглощения фенола записывали на спектрофотометре UV-VIS Agilent-8453.

Результаты и их обсуждение

Железоалюмосиликатные материалы были получены путем введения полигидроксокомплексов железа и термической стабилизации их в виде оксидов в структуре монтмориллонита, который является представителем диоктаэдрических смектитов [5]. Стандартная методика синтеза материалов состояла из нескольких стадий: 1) приготовление модифицирующего раствора (МР); 2) приготовление суспензии глины; 3) смешение МР и суспензии глины; 4) отделение модифицированной глины от жидкой фазы; 5) отмывание модифицированной глины от хлоридов; 6) сушка и прокаливание моди- фицированной глины с получением железоалюмосиликатного материала. МР представлял собой раствор полигидроксокомплексов (ПГК) железа, которые были приготовлены щелочным гидролизом растворов FeCl3 раствором NaOH при соотношении [ОН]/[Fе] 2.0. МР до контакта с суспензией глины выстаивался в течение суток при комнатной температуре [6]. Водную глинистую суспензию с соотношением твердой и жидкой фаз 1/100 также оставляли в течение 24 ч при комнатной температуре. Затем к ней при постоянном перемешивании добавляли по каплям модифицирующий раствор и выдерживали в течение суток при комнатной температуре. После отмывания от хлоридов модифицированная глина была высушена при комнатной температуре и прокалена при 500оС в течение 2 ч. Ранее было показано, что предварительная обработка суспензии глины УЗ способствует увеличению удельной поверхности при получении интеркалированных материалов [7]. Нами при синтезе железоалюмосиликатного материала Fе-М проводилась обработка УЗ суспензии глины на стадии 2. При получении материала Fе-М-УЗ дополнительно проводилась обработка УЗ смеси глины и МР на стадии 3.

По данным таблицы 1 модифицирование приводит к росту удельной поверхности образцов по сравнению с исходной глиной (85 м2/г).

Таблица 1

Физико-химические свойства железоалюмосиликатных материалов

Материалы

Содержание Fe, мг/г

S уд , м2

Время*, мин

Вымывание Fe, %

Fe-M

86.0

119

55

2.3

Fe-M-УЗ

56.5

112

170

13.6

* – Время 90% окисления фенола пероксидом водорода

Количество фиксированного железа в Fе-М больше, чем в образце Fе-М-УЗ, что может быть связано с тем, что под воздействием УЗ происходит разрушение образующихся крупных ПГК железа и при синтезе Fе-М-УЗ обменные катионы глины замещаются полигидроксокатионами, содержащими меньшее количество атомов железа. Материалы также различаются по каталитической активности и стабильности в окислении фенола (табл. 1). В присутствии Fе-М полное окисление фенола происходит за 90 мин, в то время как при использовании Fе-М-УЗ конверсия составляет 91.5% за 180 мин. Образец Fе-М характеризуется большей стабильностью к вымыванию катионов железа из катализатора в раствор.

Таким образом, применение ультразвука при синтезе железоалюмосиликатных материалов, а именно на стадии подготовки суспензии глины, приводит к увеличению удельной поверхности, к фиксированию большего количества железа и вследствие этого к увеличению каталитической активности в реакции окисления фенола.

Статья научная