Принципы, технологии и устройства "капельной" микрофлюидики. Ч. 1 (обзор)

Автор: Кухтевич И.В., Посмитная Я.С., Белоусов К.И., Букатин А.С., Евстрапов Анатолий Александрович

Журнал: Научное приборостроение @nauchnoe-priborostroenie

Рубрика: Приборостроение физико-химической биологии

Статья в выпуске: 3 т.25, 2015 года.

Бесплатный доступ

"Капельная" микрофлюидика является перспективной основой создания микроустройств для анализа различных биологических объектов и синтеза веществ в предельно малых изолированных объемах. Хотя за последние годы зарубежными исследователями были продемонстрированы впечатляющие возможности "капельной" микрофлюидики для многих практических применений, ее потенциал до сих пор не исчерпан. Обзор представлен в нескольких частях. В первой части обзора изложены следующие темы. - Физика процесса. Образование капель. - Моделирование процессов в "капельной" микрофлюидике. - Устройства для формирования капель. В темах освещены основные представления о физике процессов в "капельной" микрофлюидике, рассмотрены механизмы и режимы формирования капель с применением микрофлюидных устройств различной конструкции.

Еще

Микрофлюидный чип, капельная микрофлюидика, безразмерные характеристические числа, генератор капель

Короткий адрес: https://sciup.org/14264990

IDR: 14264990

Список литературы Принципы, технологии и устройства "капельной" микрофлюидики. Ч. 1 (обзор)

  • Solvas X.C. et al. Droplet microfluidics: recent developments and future applications//Chemical Communications. 2011. Vol. 47, no. 7. P. 1936-1942 DOI: 10.1039/C0CC02474K
  • Shum H.C. et al. Droplet microfluidics for fabrication of non-spherical particles//Macromolecular rapid communications. 2010. Vol. 31, no. 2. P. 108-118.
  • Günther A., Jensen K.F. Multiphase microfluidics: from flow characteristics to chemical and materials synthesis//Lab on a Chip. 2006. Vol. 6, no. 12. P. 1487-1503 DOI: 10.1039/b609851g
  • Marre S., Jensen K.F. Synthesis of micro and nanostructures in microfluidic systems//Chemical Society Reviews. 2010. Vol. 39, no. 3. P. 1183-1202 DOI: 10.1039/b821324k
  • Stanley C.E., Wootton R.C.R., deMello A.J. Continuous and segmented flow microfluidics: Applications in high-throughput chemistry and biology//CHIMIA International Journal for Chemistry. 2012. Vol. 66, no. 3. P. 88-98 DOI: 10.2533/chimia.2012.88
  • Seemann R. et al. Droplet based microfluidics//Reports on progress in physics. 2012. Vol. 75, no. 1. P. 016601 DOI: 10.1088/0034-4885/75/1/016601
  • Lederberg J. A simple method for isolating individual microbes//Journal of bacteriology. 1954. Vol. 68, no. 2. P. 258.
  • Nossal G.J.V. Antibody production by single cells//British journal of experimental pathology. 1958. Vol. 39, no. 5. P. 544 DOI: 10.1038/1811419a0
  • Theberge A.B. et al. Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology//Angewandte Chemie International Edition. 2010. Vol. 49, no. 34. P. 5846-5868 DOI: 10.1002/anie.200906653
  • Günther P.M. et al. Formation of monomeric and novolak azo dyes in nanofluid segments by use of a double injector chip reactor//Chemical engineering & technology. 2005. Vol. 28, no. 4. P. 520-527 DOI: 10.1002/ceat.200407122
  • Lee C.C. et al. A microfluidic oligonucleotide synthesizer//Nucleic Acids Research. 2010. Vol. 38, no. 8. P. 2514-2521 DOI: 10.1093/nar/gkq092
  • Shestopalov I., Tice J.D., Ismagilov R.F. Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system//Lab on a Chip. 2004. Vol. 4, no. 4. P. 316-321 DOI: 10.1039/b403378g
  • Schaerli Y., Hollfelder F. The potential of microfluidic water-in-oil droplets in experimental biology//Molecular Biosystems. 2009. Vol. 5, no. 12. P. 1392-1404 DOI: 10.1039/b907578j
  • Baret J.C. et al. Droplets and emulsions: very high-throughput screening in biology//Medecine sciences: M/S. 2008. Vol. 25, no. 6-7. P. 627-632 DOI: 10.1051/medsci/2009256-7627
  • Leng X. et al. Agarose droplet microfluidics for highly parallel and efficient single molecule emulsion PCR//Lab on a Chip. 2010. Vol. 10, no. 21. P. 2841-2843 DOI: 10.1039/c0lc00145g
  • Jing Yan et al. Monodisperse water-in-oil-in-water (W/O/W) double emulsion droplets as uniform compartments for high-throughput analysis via flow cytometry//Micromachines. 2013. Vol. 4. P. 402-413 DOI: 10.3390/mi4040402
  • Rakszewska A., Tel J., Chokkalingam V., Huck W.T.S. One drop at a time: toward droplet microfluidics as a versatile tool for single-cell analysis//NPG Asia Materials. 2014. Vol. 6. P. e133 DOI: 10.1038/am.2014.86
  • Wootton R.C.R., De Mello A.J. Analog-to-digital drug screening//Nature. 2012. Vol. 483. P. 43-44 DOI: 10.1038/483043a
  • Sackmann E.K. et al. The present and future role of microfluidics in biomedical research//Nature. 2014. Vol. 507. P. 181-189 DOI: 10.1038/nature13118
  • Tabeling P. Recent progress in the physics of microfluidics and related biotechnological applications//Current Opinion in Biotechnology. 2014. Vol. 25. P. 129-134 DOI: 10.1016/j.copbio.2013.11.009
  • Baroud C.N., Gallaire F., Dangla R. Critical review: dynamics of microfluidic droplets//Lab on a Chip. 2010. Vol. 10. P. 2032-2045 DOI: 10.1039/c001191f
  • Choi K. et al. Digital microfluidics//Annual review of analytical chemistry. 2012. Vol. 5. P. 413-440 DOI: 10.1146/annurev-anchem-062011-143028
  • Teh S.-Y., Lin R., Hung L.-H., Lee A.P. Droplet microfluidics//Lab on a Chip. 2008. Vol. 8. P. 198-220 DOI: 10.1039/b715524g
  • Ying L., Wang Q. Microfluidic chip-based technologies: emerging platforms for cancer diagnosis//BMC Biotechnology. 2013. Vol. 13, no. 76. P. 10 DOI: 10.1186/1472-6750-13-76
  • Rusling J.F. et al. Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer//Analyst. 2010. Vol. 135, no. 10. P. 2496-2511 DOI: 10.1039/c0an00204f
  • Hindson B.J. et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number//Analytical chemistry. 2011. Vol. 83, no. 22. P. 8604-8610 DOI: 10.1021/ac202028g
  • Lin Y.Y., Welch E.R. F., Fair R.B. Low voltage picoliter droplet manipulation utilizing electrowetting-on-dielectric platforms//Sensors and Actuators B: Chemical. 2012. Vol. 173. P. 338-345 DOI: 10.1016/j.snb.2012.07.022
  • Welch E.R.F. et al. Picoliter DNA sequencing chemistry on an electrowetting-based digital microfluidic platform//Biotechnology journal. 2011. Vol. 6, no. 2. P. 165-176 DOI: 10.1002/biot.201000324
  • Guo M.T. et al. Droplet microfluidics for high-throughput biological assays//Lab on a Chip. 2012. Vol. 12. P. 2146-2155 DOI: 10.1039/c2lc21147e
  • Cubaud T., Mason T.G. Capillary threads and viscous droplets in square microchannels//Physics of Fluid. 2008. Vol. 20. P. 5 DOI: 10.1063/1.2911716
  • Garstecki P. et al. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up//Lab on a Chip. 2006. Vol. 6. P. 437-446 DOI: 10.1039/b510841a
  • Markey A.L., Mohr S., Day P.J. High-throughput droplet PCR//Methods. 2010. Vol. 50. P. 277-281 DOI: 10.1016/j.ymeth.2010.01.030
  • Clausell-Tormos J. et al. Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms//Chemistry & biology. 2008. Vol. 15, no. 5. P. 427-437 DOI: 10.1016/j.chembiol.2008.04.004
  • Pilch M., Erdman C.A. Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop//International Journal of Multiphase Flow. 1987. Vol. 13, no. 6. P. 741-757 DOI: 10.1016/0301-9322(87)90063-2
  • Lin S.P., Reitz R.D. Drop and spray formation from a liquid jet//Annual Review of Fluid Mechanics. 1998. Vol. 30, no. 1. P. 85-105 DOI: 10.1146/annurev.fluid.30.1.85
  • Liu H. Science and Engineering of Droplets: Fundamentals and Applications. William Andrew Publishing. LLC. 1981. 539 p.
  • Di Carlo D. Inertial microfluidics//Lab on a Chip. 2009. Vol. 9. P. 3038-3046 DOI: 10.1039/b912547g
  • Amini H. et al. Engineering fluid flow using sequenced microstructures//Nature communications. 2013. Vol. 4. P. 1826 DOI: 10.1038/ncomms2841
  • Eggers J. Nonlinear dynamics and breakup of free-surface flows//Reviews of modern physics. 1997. Vol. 69. P. 865 DOI: 10.1103/RevModPhys.69.865
  • Baroud C.N., Gallaire F., Dangla R. Dynamics of microuidic droplets//Lab on a Chip. 2010. Vol. 10. P. 2032-2045 DOI: 10.1039/c001191f
  • De Menech M. et al. Transition from squeezing to dripping in a microfluidic T-shaped junction//Journal of Fluid Mechanics. 2008. Vol. 595. P. 141-161 DOI: 10.1017/S002211200700910X
  • Zhao C.X., Middelberg A.P.J. Two-phase microfluidic flows//Chemical Engineering Science. 2011. Vol. 66, no. 7. P. 1394-1411 DOI: 10.1016/j.ces.2010.08.038
  • Liu H., Zhang Y. Droplet formation in a T-shaped microfluidic junction//Journal of applied physics. 2009. Vol. 106, no. 3. P. 034906 DOI: 10.1063/1.3187831
  • Dreyfus R., Tabeling P., Willaime H. Ordered and disordered patterns in two-phase flows in microchannels//Physical Review Letters. 2003. Vol. 90, no. 14. P. 144505 DOI: 10.1103/PhysRevLett.90.144505
  • Li W. et al. Screening of the effect of surface energy of microchannels on microfluidic emulsification//Langmuir. 2007. Vol. 23, no. 15. P. 8010-8014 DOI: 10.1021/la7005875
  • Holm S. Experimental Biophysics, FFFN20, FYST23, FAF010F. Lund University. 2013. Интернет-ресурс URL: (http://nanobio.ftf.lth.se/~biokurs/); URL:(http://nanobio.ftf.lth.se/~biokurs/labs/Lab5_Droplets.pdf).
  • Arya S. et al. Microfluidic mechanics and applications: a review//Journal of Nano-& Electronic Physics. 2013. Vol. 5, no. 4. P. 04047.
  • Leshansky A.M., Pismen L.M. Breakup of drops in a microfluidic T junction//Physics of Fluids. 2009. Vol. 21, no. 2. P. 023303 DOI: 10.1063/1.3078515
  • Leshansky A.M. et al. Obstructed breakup of slender drops in a microfluidic T junction//Physical review letters. 2012. Vol. 108, no. 26. P. 264502 DOI: 10.1103/PhysRevLett.108.264502
  • Malloggi F. et al. Monodisperse colloids synthesized with nanofluidic technology//Langmuir. 2009. Vol. 26, no. 4. P. 2369-2373 DOI: 10.1021/la9028047
  • Raven J.P., Marmottant P. Periodic microfluidic bubbling oscillator: Insight into the stability of two-phase microflows//Physical Review Letters. 2006. Vol. 97, no. 15. P. 154501 DOI: 10.1103/PhysRevLett.97.154501
  • Guillot P. et al. Stability of a jet in confined pressure-driven biphasic flows at low Reynolds numbers//Physical Review Letters. 2007. Vol. 99, no. 10. P. 104502 DOI: 10.1103/PhysRevLett.99.104502
  • Huerre P., Monkewitz P.A. Local and global instabilities in spatially developing flows//Annual Review of Fluid Mechanics. 1990. Vol. 22, no. 1. P. 473-537 DOI: 10.1146/annurev.fl.22.010190.002353
  • Saffman P.G., Taylor G. The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid//Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 1958. Vol. 245, no. 1242. P. 312-329 DOI: 10.1098/rspa.1958.0085
  • Kopf-Sill A.R., Homsy G.M. Bubble motion in a Hele-Shaw cell//Physics of Fluids. 1988. Vol. 31, no. 1. P. 18-26 DOI: 10.1063/1.866566
  • Beatus T., Bar-Ziv R.H., Tlusty T. The physics of 2D microfluidic droplet ensembles//Physics Reports. 2012. Vol. 516, no. 3. P. 103-145 DOI: 10.1016/j.physrep.2012.02.003
  • Tan Y.C. et al. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting//Lab on a Chip. 2004. Vol. 4, no. 4. P. 292-298 DOI: 10.1039/b403280m
  • Guazzelli É., Hinch J. Fluctuations and instability in sedimentation//Annual Review of Fluid Mechanics. 2011. Vol. 43. P. 97-116 DOI: 10.1146/annurev-fluid-122109-160736
  • Ramaswamy S. Issues in the statistical mechanics of steady sedimentation//Advances in Physics. 2001. Vol. 50, no. 3. P. 297-341 DOI: 10.1080/00018730110050617
  • Brenner M.P. Screening mechanisms in sedimentation//Physics of Fluids. 1999. Vol. 11, no. 4. P. 754-772 DOI: 10.1063/1.869948
  • Segre P.N., Herbolzheimer E., Chaikin P.M. Long-range correlations in sedimentation//Physical Review Letters. 1997. Vol. 79, no. 13. P. 2574 DOI: 10.1103/PhysRevLett.79.2574
  • Batchelor G.K. Sedimentation in a dilute dispersion of spheres//Journal of Fluid Mechanics. 1972. Vol. 52, no. 2. P. 245-268 DOI: 10.1017/S0022112072001399
  • Caflisch R.E., Luke J.H.C. Variance in the sedimentation speed of a suspension//Physics of Fluids. 1985. Vol. 28, no. 3. P. 759-760 DOI: 10.1063/1.865095
  • Guazzelli É. Sedimentation of small particles: how can such a simple problem be so difficult?//Comptes Rendus Mecanique. 2006. Vol. 334, no. 8. P. 539-544 DOI: 10.1016/j.crme.2006.07.009
  • Mucha P.J. et al. A model for velocity fluctuations in sedimentation//Journal of Fluid Mechanics. 2004. Vol. 501. P. 71-104 DOI: 10.1017/S0022112003006967
  • Tee S.Y. et al. Velocity fluctuations of initially stratified sedimenting spheres//Physics of Fluids (1994-present). 2007. Vol. 19, no. 11. P. 113304 DOI: 10.1063/1.2806597
  • Tee S.Y. et al. Nonuniversal velocity fluctuations of sedimenting particles//Physical review letters. 2002. Vol. 89, no. 5. P. 054501 DOI: 10.1103/PhysRevLett.89.054501
  • Tlusty T. Screening by symmetry of long-range hydrodynamic interactions of polymers confined in sheets//Macromolecules. 2006. Vol. 39, no. 11. P. 3927-3930 DOI: 10.1021/ma060251d
  • Beatus T., Tlusty T., Bar-Ziv R. Phonons in a one-dimensional microfluidic crystal//Nature Physics. 2006. Vol. 2, no. 11. P. 743-748 DOI: 10.1038/nphys432
  • Beatus T., Bar-Ziv R., Tlusty T. Anomalous microfluidic phonons induced by the interplay of hydrodynamic screening and incompressibility//Physical Review Letters. 2007. Vol. 99, no. 12. P. 124502 DOI: 10.1103/PhysRevLett.99.124502
  • Fairbrother F., Stubbs A.E. Studies in electro-endosmosis. Part VI. The “bubble-tube” method of measurement//Journal of the Chemical Society (Resumed). 1935. P. 527-529 DOI: 10.1039/jr9350000527
  • Taylor G.I. Deposition of a viscous fluid on the wall of a tube//Journal of Fluid Mechanics. 1961. Vol. 10, no. 2. P. 161-165 DOI: 10.1017/S0022112061000159
  • Bretherton F.P. The motion of long bubbles in tubes//Journal of Fluid Mechanics. 1961. Vol. 10, no. 2. P. 166-188 DOI: 10.1017/S0022112061000160
  • Hodges S.R., Jensen O.E., Rallison J.M. The motion of a viscous drop through a cylindrical tube//Journal of Fluid Mechanics. 2004. Vol. 501. P. 279-301 DOI: 10.1017/S0022112003007213
  • Wong H., Radke C.J., Morris S. The motion of long bubbles in polygonal capillaries. Part 1. Thin films//Journal of Fluid Mechanics. 1995. Vol. 292. P. 71-94 DOI: 10.1017/S0022112095001443
  • Wong H., Radke C.J., Morris S. The motion of long bubbles in polygonal capillaries. Part 2. Drag, fluid pressure and fluid flow//Journal of Fluid Mechanics. 1995. Vol. 292. P. 95-110 DOI: 10.1017/S0022112095001455
  • Schwartz L.W., Princen H.M., Kiss A.D. On the motion of bubbles in capillary tubes//Journal of Fluid Mechanics. 1986. Vol. 172. P. 259-275 DOI: 10.1017/S0022112086001738
  • Reinelt D.A., Saffman P.G. The penetration of a finger into a viscous fluid in a channel and tube//SIAM Journal on Scientific and Statistical Computing. 1985. Vol. 6, no. 3. P. 542-561 DOI: 10.1137/0906038
  • Hazel A.L., Heil M. The steady propagation of a semi-infinite bubble into a tube of elliptical or rectangular cross-section//Journal of Fluid Mechanics. 2002. Vol. 470. P. 91-114 DOI: 10.1017/S0022112002001830
  • Aussillous P., Quéré D. Quick deposition of a fluid on the wall of a tube//Physics of Fluids. 2000. Vol. 12, no. 10. P. 2367-2371 DOI: 10.1063/1.1289396
  • Абиев Р.Ш. Моделирование гидродинамики снарядного режима течения газожидкостной системы в капиллярах//Теоретические основы химической технологии. 2008. Т. 42, №. 2. С. 115-127.
  • Sarrazin F. et al. Hydrodynamic structures of droplets engineered in rectangular micro-channels//Microfluidics and Nanofluidics. 2008. Vol. 5, no. 1. P. 131-137 DOI: 10.1007/s10404-007-0233-9
  • Jousse F. et al. Compact model for multi-phase liquid-liquid flows in micro-fluidic devices//Lab on a Chip. 2005. Vol. 5, no. 6. P. 646-656 DOI: 10.1039/b416666c
  • Fuerstman M.J. et al. The pressure drop along rectangular microchannels containing bubbles//Lab on a Chip. 2007. Vol. 7, no. 11. P. 1479-1489 DOI: 10.1039/b706549c
  • Sessoms D.A. et al. Droplet motion in microfluidic networks: Hydrodynamic interactions and pressure-drop measurements//Physical Review E. 2009. Vol. 80, no. 1. P. 016317 DOI: 10.1103/PhysRevE.80.016317
  • Labrot V. et al. Extracting the hydrodynamic resistance of droplets from their behavior in microchannel networks//Biomicrofluidics. 2009. Vol. 3, no. 1. P. 012804 DOI: 10.1063/1.3109686
  • Adzima B.J., Velankar S.S. Pressure drops for droplet flows in microfluidic channels//Journal of Micromechanics and Microengineering. 2006. Vol. 16, no. 8. P. 1504-1510 DOI: 10.1088/0960-1317/16/8/010
  • Xu J.H. et al. Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping//Microfluidics and Nanofluidics. 2008. Vol. 5, no. 6. P. 711-717 DOI: 10.1007/s10404-008-0306-4
  • Tice J.D. et al. Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers//Langmuir. 2003. Vol. 19, no. 22. P. 9127-9133 DOI: 10.1021/la030090w
  • Ganán-Calvo A.M. Perfectly monodisperse microbubbling by capillary flow focusing: An alternate physical description and universal scaling//Physical Review E. 2004. Vol. 69, no. 2. P. 027301 DOI: 10.1103/PhysRevE.69.027301
  • Tan J. et al. Gas-liquid flow in T-junction microfluidic devices with a new perpendicular rupturing flow route//Chemical Engineering Journal. 2009. Vol. 146, no. 3. P. 428-433 DOI: 10.1016/j.cej.2008.10.024
  • Dietrich N. et al. Bubble formation dynamics in various flow-focusing microdevices//Langmuir. 2008. Vol. 24, no. 24. P. 13904-13911 DOI: 10.1021/la802008k
  • Xiong R., Chung J.N. Bubble generation and transport in a microfluidic device with high aspect ratio//Experimental Thermal and Fluid Science. 2009. Vol. 33, no. 8. P. 1156-1162 DOI: 10.1016/j.expthermflusci.2009.07.005
  • Cristini V., Tan Y.C. Theory and numerical simulation of droplet dynamics in complex flows -a review//Lab on a Chip. 2004. Vol. 4, no. 4. P. 257-264 DOI: 10.1039/b403226h
  • Zinchenko A.Z., Rother M.A., Davis R.H. Cusping, capture, and breakup of interacting drops by a curvatureless boundary-integral algorithm//Journal of Fluid Mechanics. 1999. Vol. 391. P. 249-292 DOI: 0.1017/S0022112099005285
  • Cristini V., Bławzdziewicz J., Loewenberg M. Drop breakup in three-dimensional viscous flows//Physics of Fluids. 1998. Vol. 10, no. 8. P. 1781-1783 DOI: 10.1063/1.869697
  • Yeo L.Y. et al. Film drainage between two surfactant-coated drops colliding at constant approach velocity//Journal of Colloid and Interface Science. 2003. Vol. 257, no. 1. P. 93-107 DOI: 10.1016/S0021-9797(02)00033-4
  • Hou T.Y., Lowengrub J.S., Shelley M.J. Boundary integral methods for multicomponent fluids and multiphase materials//Journal of Computational Physics. 2001. Vol. 169, no. 2. P. 302-362 DOI: 10.1006/jcph.2000.6626
  • Tryggvason G. et al. A front-tracking method for the computations of multiphase flow//Journal of Computational Physics. 2001. Vol. 169, no. 2. P. 708-759 DOI: 10.1006/jcph.2001.6726
  • Shin S., Juric D. Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity//Journal of Computational Physics. 2002. Vol. 180, no. 2. P. 427-470 DOI: 10.1006/jcph.2002.7086
  • Wilkes E. D., Phillips S. D., Basaran O. A. Computational and experimental analysis of dynamics of drop formation//Physics of Fluids. 1999. Vol. 11, no. 12. P. 3577-3598 DOI: 10.1063/1.870224
  • Prosperetti A., Tryggvason G. Computational methods for multiphase flow. Cambridge university press, 2007. 470 p DOI: 10.1017/CBO9780511607486
  • Notz P.K., Chen A.U., Basaran O.A. Satellite drops: Unexpected dynamics and change of scaling during pinch-off//Physics of Fluids. 2001. Vol. 13, no. 3. P. 549-552 DOI: 10.1063/1.1343906
  • Sankaranarayanan K. et al. A comparative study of lattice Boltzmann and front-tracking finite-difference methods for bubble simulations//International Journal of Multiphase Flow. 2003. Vol. 29, no. 1. P. 109-116 DOI: 10.1016/S0301-9322(02)00120-9
  • Watanabe T., Ebihara K. Numerical simulation of coalescence and breakup of rising droplets//Computers & Fluids. 2003. Vol. 32, no. 6. P. 823-834 DOI: 10.1016/S0045-7930(02)00022-1
  • Aidun C.K., Clausen J.R. Lattice-Boltzmann method for complex flows//Annu. Rev. Fluid Mech. 2010. Vol. 42. P. 439-472 DOI: 10.1146/annurev-fluid-121108-145519
  • Куперштох А.Л. Трехмерное моделирование двухфазных систем типа жидкость-пар методом решеточных уравнений Больцмана на GPU//Вычислительные методы и программирование. 2012. Т. 13, №. 1. С. 130-138.
  • Gupta A. et al. Droplet formation via squeezing mechanism in a microfluidic flow-focusing device//Computers & Fluids. 2014. Vol. 100. P. 218-226 DOI: 10.1016/j.compfluid.2014.05.023
  • Zhang J. Lattice Boltzmann method for microfluidics: models and applications//Microfluidics and Nanofluidics. 2011. Vol. 10, no. 1. P. 1-28 DOI: 10.1007/s10404-010-0624-1
  • Nourgaliev R.R. et al. The lattice Boltzmann equation method: theoretical interpretation, numerics and implications//International Journal of Multiphase Flow. 2003. Vol. 29, no. 1. P. 117-169 DOI: 10.1016/S0301-9322(02)00108-8
  • Yabe T., Xiao F., Utsumi T. The constrained interpolation profile method for multiphase analysis//Journal of Computational Physics. 2001. Vol. 169, no. 2. P. 556-593 DOI: 10.1006/jcph.2000.6625
  • Жамбалова Д.Б., Черный С.Г. Метод интерполяционного профиля решения уравнений переноса//Вестник НГУ. Сер.: Информационные технологии. 2012. Т. 10. С. 33-54.
  • Scardovelli R., Zaleski S. Direct numerical simulation of free-surface and interfacial flow//Annual Review of Fluid Mechanics. 1999. Vol. 31, no. 1. P. 567-603 DOI: 10.1146/annurev.fluid.31.1.567
  • Bedram A., Moosavi A. Droplet breakup in an asymmetric microfluidic T junction//The European Physical Journal E: Soft Matter and Biological Physics. 2011. Vol. 34, no. 8. P. 1-8 DOI: 10.1140/epje/i2011-11078-7
  • Hong Y., Wang F. Flow rate effect on droplet control in a co-flowing microfluidic device//Microfluidics and Nanofluidics. 2007. Vol. 3, no. 3. P. 341-346 DOI: 10.1007/s10404-006-0134-3
  • Afkhami S., Leshansky A.M., Renardy Y. Numerical investigation of elongated drops in a microfluidic T-junction//Physics of Fluids. 2011. Vol. 23, no. 2. P. 022002 DOI: 10.1063/1.3549266
  • Lee J., Lee W., Son G. Numerical study of droplet breakup and merging in a microfluidic channel//Journal of Mechanical Science and Technology. 2013. Vol. 27, no. 6. P. 1693-1699 DOI: 10.1007/s12206-013-0418-y
  • Anderson D.M., McFadden G.B., Wheeler A.A. Diffuse-interface methods in fluid mechanics//Annual review of fluid mechanics. 1998. Vol. 30, no. 1. P. 139-165 DOI: 10.1146/annurev.fluid.30.1.139
  • Jacqmin D. Calculation of two-phase Navier-Stokes flows using phase-field modeling//Journal of Computational Physics. 1999. Vol. 155, no. 1. P. 96-127 DOI: 10.1006/jcph.1999.6332
  • Badalassi V.E., Ceniceros H.D., Banerjee S. Computation of multiphase systems with phase field models//Journal of Computational Physics. 2003. Vol. 190, no. 2. P. 371-397 DOI: 10.1016/S0021-9991(03)00280-8
  • Yue P. et al. A diffuse-interface method for simulating two-phase flows of complex fluids//Journal of Fluid Mechanics. 2004. Vol. 515. P. 293-317 DOI: 10.1017/S0022112004000370
  • De Menech M. Modeling of droplet breakup in a microfluidic T-shaped junction with a phase-field model//Physical Review E. 2006. Vol. 73, no. 3. P. 031505 DOI: 10.1103/PhysRevE.73.031505
  • Osher S., Fedkiw R.P. Level set methods: an overview and some recent results//Journal of Computational physics. 2001. Vol. 169, no. 2. P. 463-502 DOI: 10.1006/jcph.2000.6636
  • Yan Y., Guo D., Wen S.Z. Numerical simulation of junction point pressure during droplet formation in a microfluidic T-junction//Chemical Engineering Science. 2012. Vol. 84. P. 591-601 DOI: 10.1016/j.ces.2012.08.055
  • Peng L. et al. The effect of interfacial tension on droplet formation in flow-focusing microfluidic device//Biomedical Microdevices. 2011. Vol. 13, no. 3. P. 559-564 DOI: 10.1007/s10544-011-9526-6
  • Renardy Y.Y., Cristini V. Effect of inertia on drop breakup under shear//Physics of Fluids. 2001. Vol. 13, no. 1. P. 7-13 DOI: 10.1063/1.1331321
  • Renardy Y.Y., Cristini V. Scalings for fragments produced from drop breakup in shear flow with inertia//Physics of Fluids. 2001. Vol. 13, no. 8. P. 2161-2164 DOI: 10.1063/1.1384469
  • Ginzburg I., Wittum G. Two-phase flows on interface refined grids modeled with VOF, staggered finite volumes, and spline interpolants//Journal of Computational Physics. 2001. Vol. 166, no. 2. P. 302-335 DOI: 10.1006/jcph.2000.6655
  • Anderson A., Zheng X., Cristini V. Adaptive unstructured volume remeshing-I: The method//Journal of Computational Physics. 2005. Vol. 208, no. 2. P. 616-625 DOI: 10.1016/j.jcp.2005.02.023
  • Zheng X. et al. Adaptive unstructured volume remeshing-II: Application to two-and three-dimensional level-set simulations of multiphase flow//Journal of Computational Physics. 2005. Vol. 208, no. 2. P. 626-650 DOI: 10.1016/j.jcp.2005.02.024
  • Anna S.L., Bontoux N., Stone H.A. Formation of dispersions using "flow focusing" in microchannels//Applied physics letters. 2003. Vol. 82, no. 3. P. 364-366 DOI: 10.1063/1.1537519
  • Köster S. et al. Drop-based microfluidic devices for encapsulation of single cells//Lab on a Chip. 2008. Vol. 8, no. 7. P. 1110-1115 DOI: 10.1039/b802941e
  • Edd J.F. et al. Controlled encapsulation of single-cells into monodisperse picolitre drops//Lab on a Chip. 2008. Vol. 8, no. 8. P. 1262-1264 DOI: 10.1039/b805456h
  • Ahn K. et al. Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels//Applied Physics Letters. 2006. Vol. 88, no. 26. P. 264105 DOI: 10.1063/1.2218058
  • Brouzes E. et al. Droplet microfluidic technology for single-cell high-throughput screening//Proceedings of the National Academy of Sciences. 2009. Vol. 106, no. 34. P. 14195-14200 DOI: 10.1073/pnas.0903542106
  • Love J.C. et al. A microengraving method for rapid selection of single cells producing antigen-specific antibodies//Nature Biotechnology. 2006. Vol. 24, no. 6. P. 703-707 DOI: 10.1038/nbt1210
  • Zhu Y., Fang Q. Analytical detection techniques for droplet microfluidics. A review//Analytica Chimica Acta. 2013. Vol. 787. P. 24-35 DOI: 10.1016/j.aca.2013.04.064
  • Jiu-Sheng C., Jiang J.H. Droplet microfluidic technology: mirodroplets formation and manipulation//Chinese Journal of Analytical Chemistry. 2012. Vol. 40, no. 8. P. 1293-1300 DOI: 10.1016/S1872-2040(11)60567-7
  • Gu H., Duits M.H.G., Mugele F. Droplets formation and merging in two-phase flow microfluidics//International Journal of Molecular Sciences. 2011. Vol. 12, no. 4. P. 2572-2597 DOI: 10.3390/ijms12042572
  • Abate A.R. et al. Impact of inlet channel geometry on microfluidic drop formation//Physical Review E. 2009. Vol. 80, no. 2. P. 026310 DOI: 10.1103/PhysRevE.80.026310
  • Guo Z.X. et al. Valve-based microfluidic droplet micromixer and mercury (II) ion detection//Sensors and Actuators A: Physical. 2011. Vol. 172, no. 2. P. 546-551 DOI: 10.1016/j.sna.2011.09.019
  • Vladisavljević G.T., Kobayashi I., Nakajima M. Generation of highly uniform droplets using asymmetric microchannels fabricated on a single crystal silicon plate: effect of emulsifier and oil types//Powder Technology. 2008. Vol. 183, no. 1. P. 37-45 DOI: 10.1016/j.powtec.2007.11.023
  • Kobayashi I. et al. Microscopic observation of emulsion droplet formation from a polycarbonate membrane//Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2002. Vol. 207, no. 1. P. 185-196 DOI: 10.1016/S0927-7757(02)00093-6
  • Kobayashi I. et al. CFD analysis of microchannel emulsification: Droplet generation process and size effect of asymmetric straight flow-through microchannels//Chemical Engineering Science. 2011. Vol. 66, no. 22. P. 5556-5565 DOI: 10.1016/j.ces.2011.07.061
  • Kojima T. et al. Emulsion culture: A miniaturized library screening system based on micro-droplets in an emulsified medium//Journal of Bioscience and Bioengineering. 2011. Vol. 112, no. 3. P. 299-303 DOI: 10.1016/j.jbiosc.2011.05.017
  • Utada A.S. et al. Dripping to jetting transitions in coflowing liquid streams//Physical Review Letters. 2007. Vol. 99, no. 9. P. 094502 DOI: 10.1103/PhysRevLett.99.094502
  • Ren Y., Liu Z., Shum H.C. Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem//Lab on a Chip. 2015. Vol. 15, no. 1. P. 121-134 DOI: 10.1039/C4LC00798K
  • Jiang K. et al. Microfluidic generation of uniform water droplets using gas as the continuous phase//Journal of colloid and interface science. 2015. Vol. 448. P. 275-279 DOI: 10.1016/j.jcis.2015.02.023
  • Hsiung S.K., Chen C.T., Lee G.B. Micro-droplet formation utilizing microfluidic flow focusing and controllable moving-wall chopping techniques//Journal of Micromechanics and Microengineering. 2006. Vol. 16, no. 11. P. 2403-2410 DOI: 10.1088/0960-1317/16/11/022
  • Martín-Banderas L. et al. Flow focusing: a versatile technology to produce size-controlled and specific-morphology microparticles//Small. 2005. Vol. 1, no. 7. P. 688-692 DOI: 10.1002/smll.200500087
  • Leman M. et al. Droplet-based microfluidics at the femtolitre scale//Lab on a Chip. 2015. Vol. 15, no. 3. P. 753-765 DOI: 10.1039/C4LC01122H
  • Kim H. et al. Controlled production of emulsion drops using an electric field in a flow-focusing microfluidic device//Applied Physics Letters. 2007. Vol. 91, no. 13. P. 133106 DOI: 10.1063/1.2790785
  • Xiong S. et al. Droplet generation via a single bubble transformation in a nanofluidic channel//Lab on a Chip. 2015. Vol. 15, no. 6. P. 1451-1457 DOI: 10.1039/C4LC01184H
  • Park S.Y. et al. High-speed droplet generation on demand driven by pulse laser-induced cavitation//Lab on a Chip. 2011. Vol. 11, no. 6. P. 1010-1012 DOI: 10.1039/c0lc00555j
  • Lin X. et al. A microfluidic chip capable of switching W/O droplets to vertical laminar flow for electrochemical detection of droplet contents//Analytica Chimica Acta. 2014. Vol. 828. P. 70-79 DOI: 10.1016/j.aca.2014.04.023
  • Isgor P.K. et al. Microfluidic droplet content detection using integrated capacitive sensors//Sensors and Actuators B: Chemical. 2015. Vol. 210. P. 669-675 DOI: 10.1016/j.snb.2015.01.018
  • Stone H.A., Stroock A.D., Ajdari A. Engineering flows in small devices: microfluidics toward a lab-ona-chip//Annu. Rev. Fluid Mech. 2004. Vol. 36. P. 381-411 DOI: 10.1146/annurev.fluid.36.050802.122124
  • Choi J. W. et al. Integrated pneumatic micro-pumps for high-throughput droplet-based microfluidics//RSC Advances. 2014. Vol. 4, no. 39. P. 20341-20345 DOI: 10.1039/c4ra02033b
  • Chen J. et al. Assembly-line manipulation of droplets in microfluidic platform for fluorescence encoding and simultaneous multiplexed DNA detection//Talanta. 2015. Vol. 134. P. 271-277 DOI: 10.1016/j.talanta.2014.11.027
  • Cramer C., Fischer P., Windhab E.J. Drop formation in a co-flowing ambient fluid//Chemical Engineering Science. 2004. Vol. 59, no. 15. P. 3045-3058 DOI: 10.1016/j.ces.2004.04.006
  • Xiong R., Bai M., Chung J.N. Formation of bubbles in a simple co-flowing micro-channel//Journal of Micromechanics and Microengineering. 2007. Vol. 17, no. 5. P. 1002-1011 DOI: 10.1088/0960-1317/17/5/021
  • Salmon J.B., Ajdari A. Transverse transport of solutes between co-flowing pressure-driven streams for microfluidic studies of diffusion/reaction processes//Journal of applied physics. 2007. Vol. 101, no. 7. P. 074902 DOI: 10.1063/1.2714773
  • Nunes J.K. et al. Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis//Journal of Physics D: Applied physics. 2013. Vol. 46, no. 11. P. 114002 DOI: 10.1088/0022-3727/46/11/114002
  • Ma S. et al. On the flow topology inside droplets moving in rectangular microchannels//Lab on a Chip. 2014. Vol. 14, no. 18. P. 3611-3620 DOI: 10.1039/C4LC00671B
  • Zhu X. et al. Continuous monitoring of bisulfide variation in microdialysis effluents by on-line droplet-based microfluidic fluorescent sensor//Biosensors and Bioelectronics. 2014. Vol. 55. P. 438-445 DOI: 10.1016/j.bios.2013.12.056
  • Abkarian M., Stone H.A. Microfluidic flow focusing: Drop size and scaling in pressure versus flow-rate-driven pumping//Electrophoresis. 2005. Vol. 26. P. 3716-3724 DOI: 10.1002/elps.200500173
  • Garstecki P. et al. Formation of monodisperse bubbles in a microfluidic flow-focusing device//Applied Physics Letters. 2004. Vol. 85, no. 13. P. 2649-2651 DOI: 10.1063/1.1796526
  • Lee W., Walker L.M., Anna S.L. Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing//Physics of Fluids. 2009. Vol. 21, no. 3. P. 032103 DOI: 10.1063/1.3081407
  • Sullivan M.T., Stone H.A. The role of feedback in microfluidic flow-focusing devices//Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 2008. Vol. 366, no. 1873. P. 2131-2143.
Еще
Статья обзорная