Принципы, технологии и устройства "капельной" микрофлюидики. Ч. 2 (обзор)

Автор: Кухтевич И.В., Посмитная Я.С., Белоусов К.И., Букатин А.С., Евстрапов Анатолий Александрович

Журнал: Научное приборостроение @nauchnoe-priborostroenie

Рубрика: Приборостроение физико-химической биологии

Статья в выпуске: 3 т.25, 2015 года.

Бесплатный доступ

Обзор представлен в нескольких частях. В первой части обзора изложены следующие темы. - Физика процесса. Образование капель. - Моделирование процессов в "капельной" микрофлюидике. - Устройства для формирования капель. Во второй части приведены разделы: - устройства для слияния капель: пассивные методы и активные методы; - обработка и модификация поверхности; - создание стабильных эмульсий в микрофлюидных устройствах. Здесь подробно обсуждаются базовые топологии микроустройств для слияния капель. Особое внимание уделяется методам и способам модификации рабочей поверхности полидиметилсилоксана - материала, наиболее часто применяемого для прототипирования микрофлюидных чипов. В отдельном разделе представлены способы создания стабильных эмульсий с использованием поверхностно-активных веществ.

Еще

Коалесценция капель, полидиметилсилоксан, модификация поверхности, эмульсия, поверхностно-активное вещество

Короткий адрес: https://sciup.org/14264992

IDR: 14264992

Список литературы Принципы, технологии и устройства "капельной" микрофлюидики. Ч. 2 (обзор)

  • Riegler H., Lazar P. Delayed coalescence behavior of droplets with completely miscible liquids//Langmuir. 2008. Vol. 24, no. 13. P. 6395-6398 DOI: 10.1021/la800630w
  • Tan Y.C. et al. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting//Lab on a Chip. 2004. Vol. 4, no. 4. P. 292-298 DOI: 10.1039/b403280m
  • Eggers J., Lister J.R., Stone H.A. Coalescence of liquid drops//Journal of Fluid Mechanics. 1999. Vol. 401. P. 293-310 DOI: 10.1017/S002211209900662X
  • Wilhelm T.S. et al. Surface-induced droplet fusion in microfluidic devices//Lab on a Chip. 2007. Vol. 7, no. 8. P. 984-986 DOI: 10.1039/b708091c
  • Köhler J.M. et al. Digital reaction technology by micro segmented flow -components, concepts and applications//Chemical Engineering Journal. 2004. Vol. 101, no. 1. P. 201-216 DOI: 10.1016/j.cej.2003.11.025
  • Chokkalingam V. et al. Optimized droplet-based microfluidics scheme for sol-gel reactions//Lab on a Chip. 2010. Vol. 10, no. 13. P. 1700-1705 DOI: 10.1039/b926976b
  • Bremond N., Thiam A.R., Bibette J. Decompressing emulsion droplets favors coalescence//Physical review letters. 2008. Vol. 100, no. 2. P. 024501 DOI: 10.1103/PhysRevLett.100.024501
  • Hung L.H. et al. Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis//Lab on a Chip. 2006. Vol. 6, no. 2. P. 174-178 DOI: 10.1039/b513908b
  • Niu X. et al. Pillar-induced droplet merging in microfluidic circuits//Lab on a Chip. 2008. Vol. 8, no. 11. P. 1837-1841 DOI: 10.1039/b813325e
  • Chabert M., Dorfman K.D., Viovy J.L. Droplet fusion by alternating current (AC) field electrocoalescence in microchannels//Electrophoresis. 2005. Vol. 26, no. 19. P. 3706-3715 DOI: 10.1002/elps.200500109
  • Link D.R. et al. Electric control of droplets in microfluidic devices//Angewandte Chemie International Edition. 2006. Vol. 45, no. 16. P. 2556-2560 DOI: 10.1002/anie.200503540
  • Niu X. et al. Electro-coalescence of digitally controlled droplets//Analytical chemistry. 2009. Vol. 81, no. 17. P. 7321-7325 DOI: 10.1021/ac901188n
  • Zagnoni M., Baroud C.N., Cooper J.M. Electrically initiated upstream coalescence cascade of droplets in a microfluidic flow//Physical Review E. 2009. Vol. 80, no. 4. P. 046303 DOI: 10.1103/PhysRevE.80.046303
  • Schwartz J.A., Vykoukal J.V., Gascoyne P.R.C. Droplet-based chemistry on a programmable micro-chip//Lab on a Chip. 2004. Vol. 4, no. 1. P. 11-17 DOI: 10.1039/b310285h
  • Singh P., Aubry N. Transport and deformation of droplets in a microdevice using diElectrophoresis//Electrophoresis. 2007. Vol. 28, no. 4. P. 644-657 DOI: 10.1002/elps.200600549
  • Wang W., Yang C., Li C.M. On-demand microfluidic droplet trapping and fusion for on-chip static droplet assays//Lab on a Chip. 2009. Vol. 9, no. 11. P. 1504-1506 DOI: 10.1039/b903468d
  • Baroud C.N., de Saint Vincent M.R., Delville J.P. An optical toolbox for total control of droplet microfluidics//Lab on a Chip. 2007. Vol. 7, no. 8. P. 1029-1033 DOI: 10.1039/b702472j
  • Lorenz R.M. et al. Vortex-trap-induced fusion of femtoliter-volume aqueous droplets//Analytical chemistry. 2007. Vol. 79, no. 1. P. 224-228 DOI: 10.1021/ac061586w
  • Lin B.C., Su Y.C. On-demand liquid-in-liquid droplet metering and fusion utilizing pneumatically actuated membrane valves//Journal of Micromechanics and Microengineering. 2008. Vol. 18, no. 11. P. 115005 DOI: 10.1088/0960-1317/18/11/115005
  • Fischer A.E. et al. A high-throughput drop microfluidic system for virus culture and analysis//Journal of virological methods. 2015. Vol. 213. P. 111-117 DOI: 10.1016/j.jviromet.2014.12.003
  • Jing Yan et al. Monodisperse water-in-oil-in-water (W/O/W) double emulsion droplets as uniform compartments for high-throughput analysis via flow cytometry//Micromachines. 2013. Vol. 4. P. 402-413, DOI: 10.3390/mi4040402
  • Bauer W.A.C. et al. Hydrophilic PDMS microchannels for high-throughput formation of oil-in-water microdroplets and water-in-oil-in-water double emulsions//Lab on a Chip. 2010. Vol. 10, no. 14. P. 1814-1819 DOI: 10.1039/c004046k
  • Mazutis L. et al. Single-cell analysis and sorting using droplet-based microfluidics//Nature protocols. 2013. Vol. 8, no. 5. P. 870-891 DOI: 10.1038/nprot.2013.046
  • Barbier V. et al. Stable modification of PDMS surface properties by plasma polymerization: application to the formation of double emulsions in microfluidic systems//Langmuir. 2006. Vol. 22, no. 12. P. 5230-5232 DOI: 10.1021/la053289c
  • Liao C.Y., Su Y.C. Formation of biodegradable microcapsules utilizing 3D, selectively surface-modified PDMS microfluidic devices//Biomedical microdevices. 2010. Vol. 12, no. 1. P. 125-133 DOI: 10.1007/s10544-009-9367-8
  • Shah R.K. et al. Designer emulsions using microfluidics//Materials Today. 2008. Vol. 11, no. 4. P. 18-27 DOI: 10.1016/S1369-7021(08)70053-1
  • Seo M. et al. Microfluidic consecutive flow-focusing droplet generators//Soft Matter. 2007. Vol. 3, no. 8. P. 986-992 DOI: 10.1039/b700687j
  • Romanowsky M.B. et al. Functional patterning of PDMS microfluidic devices using integrated chemo-masks//Lab on a Chip. 2010. Vol. 10, no. 12. P. 1521-1524 DOI: 10.1039/c004050a
  • Demming S. et al. Characterization of long-term stability of hydrophilized PEG-grafted PDMS within different media for biotechnological and pharmaceutical applications//Physica status solidi (a). 2011. Vol. 208, no. 6. P. 1301-1307 DOI: 10.1002/pssa.201000967
  • Zdyrko B., Klep V., Luzinov I. Universal platform for modification employing grafted polymer layers//Material Matters. 2008. Vol. 3, no. 2. P. 44-46.
  • Hwang S., Choi C.H., Lee C.S. Regioselective surface modification of PDMS microfluidic device for the generation of monodisperse double emulsions//Macromolecular Research. 2012. Vol. 20, no. 4. P. 422-428 DOI: 10.1007/s13233-012-0048-8
  • Abate A.R., Weitz D.A. High-order multiple emulsions formed in poly (dimethylsiloxane) microfluidics//Small. 2009. Vol. 5, no. 18. P. 2030-2032 DOI: 10.1002/smll.200900569
  • Kim B.Y. et al. Solvent-resistant PDMS microfluidic devices with hybrid inorganic/organic polymer coatings//Advanced Functional Materials. 2009. Vol. 19, no. 23. P. 3796-3803 DOI: 10.1002/adfm.200901024
  • Abate A.R. et al. Patterning microfluidic device wettability using flow confinement//Lab on a Chip. 2010. Vol. 10, no. 14. P. 1774-1776 DOI: 10.1039/c004124f
  • Abate A.R. et al. Photoreactive coating for high-contrast spatial patterning of microfluidic device wettability//Lab on a Chip. 2008. Vol. 8, no. 12. P. 2157-2160 DOI: 10.1039/b813405g
  • Bibette J. et al. Stability criteria for emulsions//Physical Review Letters. 1992. Vol. 69, no. 16. P. 2439-2442 DOI: 10.1103/PhysRevLett.69.2439
  • Amarouchene Y., Cristobal G., Kellay H. Noncoalescing drops//Physical Review Letters. 2001. Vol. 87, no. 20. P. 206104 DOI: 10.1103/PhysRevLett.87.206104
  • Schramm L.L. Emulsions, Foams, and Suspensions: Fundamentals and Applications. Wiley-VCH, Weinheim, Germany, 2005. 463 p DOI: 10.1002/3527606750
  • Landfester K. Recent developments in miniemulsions -formation and stability mechanisms//Macromolecular Symposia. 2000. Vol. 150, no. 1. P. 171-178. doi: 10.1002/1521-3900(200002)150:13.0.CO;2-D.
  • Goodwin G.W. Colloids and interfaces with surfactants and polymers. An Introduction. John Wiley & Sons Ltd., 2004. 289 p DOI: 10.1002/0470093919
  • Griffin W.C. Hydrophilic-lipophilic balance//J. Soc. Cosmet. Chem. 1949. Vol. 1. P. 311-326.
  • Baret J.C. Surfactants in droplet-based microfluidics//Lab on a Chip. 2012. Vol. 12, no. 3. P. 422-433 DOI: 10.1039/C1LC20582J
  • Zhang R., Somasundaran P. Advances in adsorption of surfactants and their mixtures at solid/solution interfaces//Advances in colloid and interface science. 2006. Vol. 123. P. 213-229 DOI: 10.1016/j.cis.2006.07.004
  • Joensson H.N., Andersson Svahn H. Droplet microfluidics -a tool for single-cell analysis//Angewandte Chemie International Edition. 2012. Vol. 51, no. 49. P. 12176-12192 DOI: 10.1002/anie.201200460
  • Link D.R. et al. Geometrically mediated breakup of drops in microfluidic devices//Physical Review Letters. 2004. Vol. 92, no. 5. P. 054503 DOI: 10.1103/PhysRevLett.92.054503
  • Schaerli Y. et al. Continuous-flow polymerase chain reaction of single-copy DNA in microfluidic microdroplets//Analytical chemistry. 2008. Vol. 81, no. 1. P. 302-306 DOI: 10.1021/ac802038c
  • Courtois F. et al. An integrated device for monitoring time-dependent in vitro expression from single genes in picolitre droplets//ChemBioChem. 2008. Vol. 9, no. 3. P. 439-446 DOI: 10.1002/cbic.200700536
  • Hatch A.C. et al. 1-Million droplet array with wide-field fluorescence imaging for digital PCR//Lab on a Chip. 2011. Vol. 11, no. 22. P. 3838-3845 DOI: 10.1039/c1lc20561g
  • Huebner A.M. et al. Monitoring a reaction at submillisecond resolution in picoliter volumes//Analytical chemistry. 2011. Vol. 83, no. 4. P. 1462-1468 DOI: 10.1021/ac103234a
  • Bremond N., Doméjean H., Bibette J. Propagation of drop coalescence in a two-dimensional emulsion: A route towards phase inversion//Physical review letters. 2011. Vol. 106, no. 21. P. 214502 DOI: 10.1103/PhysRevLett.106.214502
  • Saint-Jaimes A., Zemb T., Langevin D. Trends in Colloid and Interface Science XV. Springer, Berlin, Heidelberg, 2001. 299 p.
  • URL: (http://www.surfachem.com/abil-em180).
  • Song H., Tice J.D., Ismagilov R.F. A microfluidic system for controlling reaction networks in time//Angewandte Chemie. 2003. Vol. 115, no. 7. P. 792-796 DOI: 10.1002/ange.200390172
  • Niu X., de Mello A.J. Building droplet-based microfluidic systems for biological analysis//Biochemical Society Transactions. 2012. Vol. 40, no. 4. P. 615-623 DOI: 10.1042/BST20120005
  • Basova E.Y., Foret F. Droplet microfluidics in (bio) chemical analysis//Analyst. 2014. Vol. 140, no. 1. P. 22-38 DOI: 10.1039/C4AN01209G
  • Zheng B., Roach L.S., Ismagilov R.F. Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets//Journal of the American Chemical Society. 2003. Vol. 125, no. 37. P. 11170-11171 DOI: 10.1021/ja037166v
  • URL: (http://www.ranbiotechnologies.com/).
  • Chen C.H. et al. Enhancing protease activity assay in droplet-based microfluidics using a biomolecule concentrator//Journal of the American Chemical Society. 2011. Vol. 133, no. 27. P. 10368-10371 DOI: 10.1021/ja2036628
  • Courtois F. et al. Controlling the retention of small molecules in emulsion microdroplets for use in cell-based assays//Analytical chemistry. 2009. Vol. 81, no. 8. P. 3008-3016 DOI: 10.1021/ac802658n
  • Woronoff G. et al. New generation of amino coumarin methyl sulfonate-based fluorogenic substrates for amidase assays in droplet-based microfluidic applications//Analytical chemistry. 2011. Vol. 83, no. 8. P. 2852-2857 DOI: 10.1021/ac200373n
  • Roach L.S., Song H., Ismagilov R.F. Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants//Analytical chemistry. 2005. Vol. 77, no. 3. P. 785-796 DOI: 10.1021/ac049061w
  • Holtze C. et al. Biocompatible surfactants for water-in-fluorocarbon emulsions//Lab on a Chip. 2008. Vol. 8, no. 10. P. 1632-1639 DOI: 10.1039/b806706f
  • Derkach S.R. Rheology of emulsions//Advances in Colloid and Interface Science. 2009. Vol. 151, no. 1. P. 1-23 DOI: 10.1016/j.cis.2009.07.001
  • Brouzes E. et al. Droplet microfluidic technology for single-cell high-throughput screening//Proceedings of the National Academy of Sciences. 2009. Vol. 106, no. 34. P. 14195-14200 DOI: 10.1073/pnas.0903542106
Еще
Статья обзорная