Процедура формирования программы номинального управления гелиоцентрическим движением космического аппарата с солнечным парусом с использованием законов локально-оптимального управления

Автор: Р.М. Хабибуллин

Журнал: Космические аппараты и технологии.

Рубрика: Ракетно-космическая техника

Статья в выпуске: 1, 2020 года.

Бесплатный доступ

Работа посвящена некомпланарному межпланетному перелету Земля-Венера космического аппарата, оснащенного солнечным парусом. Целью гелиоцентрического движения является попадание космического аппарата с неидеально отражающим солнечным парусом в сферу Хилла Венеры с нулевым гиперболическим избытком скорости. В работе используется неидеально отражающая модель солнечного паруса, величина и направление ускорения от которого рассчитывается с учетом зеркального и диффузного отражений, поглощения и пропускания фотонов поверхностью солнечного паруса. Одной из главных задач в области навигации и управления движением космического аппарата является поиск простой энергоэффективной схемы управления для выполнения того или иного маневра. Именно такими схемами управления и являются законы локально-оптимального управления, различные комбинации которых позволяют выполнить необходимые маневры при межпланетном перелете. Описана процедура формирования программы управления для некомпланарного межпланетного перелета типа Земля-Венера космического аппарата с неидеально отражающим солнечным парусом. В качестве результатов получены траектория перелета, изменение фазовых координат во времени, графики изменения управляющих углов и сформированная программа номинального управления. Полученные результаты удовлетворяют всем граничным условиям, описанным в постановке задачи.

Еще

Неидеально отражающий солнечный парус, закон локально-оптимального управления, программа номинального управления, некомпланарный межпланетный перелет

Короткий адрес: https://sciup.org/14115934

IDR: 14115934   |   DOI: 10.26732/j.st.2020.1.01

Список литературы Процедура формирования программы номинального управления гелиоцентрическим движением космического аппарата с солнечным парусом с использованием законов локально-оптимального управления

  • Поляхова Е. Н. Космический полет с солнечным парусом. М. : Книжный дом «ЛИБРОКОМ», 2011. 320 с.
  • Macdonald M. Advances in Solar Sailing // Materials of the Third International Symposium on Solar Sailing Glasgow. 2013. 977 p.
  • Johnson L., Whorton M., Heaton A., Pinson R., Laue G., Adams C. NanoSail-D: A solar sail demonstration mission // Acta Astronautica, 2011, vol. 68, pp. 571-575.
  • Mori O., Sawada H., Funase R., Morimoto M., Endo T., Yamamoto T., Tsyda Y., Kawakatsu Y., Kawaguchi J. First Solar Power Sail Demonstration by IKAROS // Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology, 2010, vol. 8, issue 27, pp. 25-31.
  • Biddy C., Svitek T. LightSail-1 Solar Sail Design and Qualification // Materials of the 41st Aerospace Mechanisms Symposium, 2012, pp. 451-463.
  • Heiligers J., Diedrich B., Derbes B., McInnes C. R. Sunjammer: Preliminary End-to-End Mission Design // Materials of AIAA/AAS Astrodynamics Specialist Conference, 2014.
  • McInnes C. R. Solar sailing: technology, dynamics and mission applications. Springer Science & Business Media, 2013, 296 p.
  • Лебедев В. Н. Расчет движения космического аппарата с малой тягой. М. : ВЦ АН СССР, 1968. 108 с.
  • Мирер С. А. Механика космического полета. Орбитальное движение. М. : Резолит, 2007. 270 с.
  • Хабибуллин Р. М. Программа управления для некомпланарного гелиоцентрического перелета к Венере космического аппарата с неидеально отражающим солнечным парусом // Вестник Самарского университета. Аэрокосмическая техника, технологии и машиностроение. 2019. Т. 18. № 4. С. 117-128.
  • Ишков С. А., Старинова О. Л. Оптимизация и моделирование движения космического аппарата с солнечным парусом // Известия РАН. 2005. Вып. 7. № 1 (13). С. 99-106.
  • JPL Solar System Dynamics [Электронный ресурс]. URL: https://ssd.jpl.nasa.gov (дата обращения: 27.09.2018).
Еще
Статья научная