Процессы деформирования упругопластического материала с дефектами при электродинамическом нагружении
Автор: Кукуджанов К.В., Левитин А.Л.
Статья в выпуске: 1, 2015 года.
Бесплатный доступ
Рассматриваются процессы, протекающие в материале при обработке металлических образцов кратковременными импульсами электрического тока большой плотности. Изучаются процессы, происходящие в окрестности микродефектов материала в форме плоских трещин при воздействии на них электрического тока. Задача решается численно для представительного элемента материала с трещиной в динамической постановке. Решение ищется в два этапа методом конечных элементов. На первом этапе исследуется термоэлектродинамическая задача, чтобы получить распределение температуры и в области фазовых превращений в материале. Зоны, в которых происходили фазовые превращения (плавление и испарение материала), рассчитывались сквозным способом без явного выделения границ раздела фаз. На втором этапе решается нестационарная связанная термомеханическая задача деформирования нагретого упругопластического образца с учетом начального распределения поля температур в материале, полученного на первом этапе, в разные моменты времени. Дополнительно термомеханическая задача решалась в квазистатической постановке с целью получения поля перемещений (остаточных деформаций) после выравнивания температуры в материале. Прослеживается влияние размера и пространственной ориентации микротрещин на локализацию электромагнитного поля в области дефекта. Расчеты на основе предложенной модели показывают, что плотность тока в вершинах микротрещин может на порядок превышать плотность тока, приложенную к образцу. Моделирование показало, что в окрестности микродефектов возникают большие градиенты электромагнитного поля и плотности тока, что приводит к интенсивному нагреву, плавлению и испарению металла в кончиках микротрещины. Под действием возникающих температурных напряжений расплавленный материал вытекает в трещину. Одновременно происходит его испарение. Берега микротрещины сближаются. Все это приводит к «залечиванию» дефектов.
Электропластичность, прямое численное моделирование, материал с дефектами, локализация электромагнитного поля и температуры, плавление, испарение
Короткий адрес: https://sciup.org/146211544
IDR: 146211544 | DOI: 10.15593/perm.mech/2015.1.07