Прогностическая роль молекулярных подтипов рака толстой кишки. Современный взгляд на проблему

Автор: Синянский Лев Евгеньевич, Вторушин Сергей Владимирович, Паталяк Станислав Викторович, Афанасьев Сергей Геннадьевич

Журнал: Сибирский онкологический журнал @siboncoj

Рубрика: Обзоры

Статья в выпуске: 3 т.20, 2021 года.

Бесплатный доступ

Цель исследования - обобщение имеющихся сведений о гетерогенности рака толстой кишки и оценка прогностической значимости его подтипов. Материал и методы. Поиск литературы производился в системах Medline, Cochrane Library, Elibrary и PubMed, включались публикации, характеризующие современный взгляд на проблему выбора стратегии послеоперационного лечения рака толстой кишки. Результаты. В обзоре освещены результаты международных исследований подтипов рака толстой кишки, основанные на комплексных мультиомных характеристиках. Особое внимание уделено описанию современных исследований по поиску прогностических маркеров рака толстой кишки. Проведен анализ мировой литературы, подтверждающий актуальность исследования иммуногистохимических маркеров, которые дадут возможность классифицировать рак толстой кишки на молекулярные подтипы в реальной клинической практике и, следовательно, значительно улучшить эффективность адъювантной терапии.

Еще

Рак толстой кишки, молекулярные подтипы, адъювантная химиотерапия, факторы прогноза

Короткий адрес: https://sciup.org/140254502

IDR: 140254502   |   DOI: 10.21294/1814-4861-2021-20-3-107-114

Список литературы Прогностическая роль молекулярных подтипов рака толстой кишки. Современный взгляд на проблему

  • Kaprin A.D., Starinskii V.V., Shakhzadova A.O. Sostoyanie onkologicheskoi pomoshchi naseleniyu Rossii v 2019 godu. M., 2020. S. 72-75.
  • Kaprin A.D., Starinskii V.V., Petrova G.V. Zlokachestvennye novoobrazovaniya v Rossii v 2018 godu (Zabolevaemost' i smertnost'). M., 2019. C. 135-136.
  • American Cancer Society. Sancer Facts and Figures-2020. Atlanta, GA, 2020. P. 13-15.
  • SEER Cancer Statistics Review, 1975-2014 [Internet]. https://seer.cancer.gov/csr/1975_2014 (cited 03.12.2020).
  • Gunawardene A., Desmond B., Shekouh A., Larsen P., Dennett E. Disease recurrence following surgery for colorectal cancer: five-year follow-up. N Z Med J. 2018 Feb 2; 131(1469): 51-58.
  • Wan X.B., Zhao Y., Fan X.J., Cai H.M., Zhang Y., Chen M.Y., Xu J., Wu X.Y., Li H.B., Zeng Y.X., Hong M.H., Liu Q. Molecular prognostic prediction for locally advanced nasopharyngeal carcinoma by support vector machine integrated approach. PLoS One. 2012; 7(3): e31989. https://doi.org/10.1371/journal.pone.0031989.
  • Tariq K., Ghias K. Colorectal cancer carcinogenesis: a review of mechanisms, Cancer Biol Med. 2016 Mar; 13(1): 120-135. https://doi.org/10.28092/j.issn.2095-3941.2015.0103.
  • Bunting S.F., Nussenzweig A. End-joining, translocations and cancer. Nat Rev Cancer. 2013 Jul; 13(7): 443-54. https://doi.org/10.1038/nrc3537.
  • Grady W.M. Genomic instability and colon cancer. Cancer Metastasis Rev. 2004 Jan-Jun; 23(1-2): 11-27. https://doi.org/10.1023/a:1025861527711.
  • Roger L., Jones R.E., Heppel N.H., Williams G.T., Sampson J.R., Baird D.M. Extensive telomere erosion in the initiation of colorectal adenomas and its association with chromosomal instability. J Natl Cancer Inst. 2013 Aug 21; 105(16): 1202-11. https://doi.org/10.1093/jnci/djt191.
  • Matsui A., Ihara T., Suda H., Mikami H., Semba K. Gene amplification: mechanisms and involvement in cancer. Biomol Concepts. 2013 Dec; 4(6): 567-82. https://doi.org/10.1515/bmc-2013-0026.
  • Boissière-Michot F., Frugier H., Ho-Pun-Cheung A., Lopez-Crapez E., Duffour J., Bibeau F. Immunohistochemical staining for p16 and BRAFV600E is useful to distinguish between sporadic and hereditary (Lynch syndrome-related) microsatellite instable colorectal carcinomas. Virchows Arch. 2016 Aug; 469(2): 135-44. https://doi.org/10.1007/s00428-016-1958-1.
  • Goel A., Xicola R.M., Nguyen T.P., Doyle B.J., Sohn V.R., Bandipalliam P., Rozek L.S., Reyes J., Cordero C., Balaguer F., Castells A., Jover R., Andreu M., Syngal S., Boland C.R., Llor X. Aberrant DNA methylation in hereditary nonpolyposis colorectal cancer without mismatch repair deficiency. Gastroenterology. 2010; 138(5): 1854-62. https://doi.org/10.1053/j.gastro.2010.01.035.
  • Malesci A., Laghi L., Bianchi P., Delconte G., Randolph A., Torri V., Carnaghi C., Doci R., Rosati R., Montorsi M., Roncalli M., Gennari L., Santoro A. Reduced likelihood of metastases in patients with microsatellite-unstable colorectal cancer. Clin Cancer Res. 2007 Jul 1; 13(13): 3831-9. https://doi.org/10.1158/1078-0432.CCR-07-0366.
  • Kawakami H., Zaanan A., Sinicrope F.A. MSI testing and its role in the management of colorectal cancer, J Clin Oncol. 2010 Jul 10; 28(20): 3219-3226. https://doi.org/10.1007/s11864-015-0348-2.
  • Le D.T., Uram J.N., Wang H., Bartlett B.R., Kemberling H., Eyring A.D., Skora A.D., Luber B.S., Azad N.S., Laheru D., Biedrzycki B., Donehower R.C., Zaheer A., Fisher G.A., Crocenzi T.S., Lee J.J., Duffy S.M., Goldberg R.M., de la Chapelle A., Koshiji M., Bhaijee F., Huebner T., Hruban R.H., Wood L.D., Cuka N., Pardoll D.M., Papadopoulos N., Kinzler K.W., Zhou S., Cornish T.C., Taube J.M., Anders R.A., Eshleman J.R., Vogelstein B., Diaz L.A. Jr. PD-1 Blockade in Tumors with MismatchRepair Deficiency. N Engl J Med. 2015 Jun 25; 372(26): 2509-20. https://doi.org/10.1056/NEJMoa1500596.
  • Toyota M., Ahuja N., Ohe-Toyota M., Herman J.G., Baylin S.B., Issa J.P. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA. 1999 Jul 20; 96(15): 8681-6. https://doi.org/10.1073/pnas.96.15.8681.
  • Bae J.M., Kim J.H., Kang G.H. Epigenetic alterations in colorectal cancer: the CpG island methylator phenotype. Histol Histopathol. 2013 May; 28(5): 585-95. https://doi.org/10.14670/HH-28.585.
  • Ang P.W., Loh M., Liem N., Lim P.L., Grieu F., Vaithilingam A., Platell C., Yong W.P., Iacopetta B., Soong R. Comprehensive profiling of DNA methylation in colorectal cancer reveals subgroups with distinct clinicopathological and molecular features. BMC Cancer. 2010 May 21; 10: 227. https://doi.org/10.1186/1471-2407-10-227.
  • Sideris M., Papagrigoriadis S. Molecular biomarkers and classification models in the evaluation of the prognosis of colorectal cancer. Anticancer Res. 2014 May; 34(5): 2061-8.
  • Samowitz W.S., Albertsen H., Herrick J., Levin T.R., Sweeney C., Murtaugh M.A., Wolff R.K., Slattery M.L. Evaluation of a large, population-based sample supports a CpG island methylator phenotype in colon cancer. Gastroenterology. 2005 Sep; 129(3): 837-45. https://doi.org/10.1053/j.gastro.2005.06.020.
  • Dahlin A.M., Palmqvist R., Henriksson M.L., Jacobsson M., Eklöf V., Rutegård J., Oberg A., Van Guelpen B.R. The role of the CpG island methylator phenotype in colorectal cancer prognosis depends on microsatellite instability screening status. Clin Cancer Res. 2010 Mar 15; 16(6): 1845-55. https://doi.org/10.1158/1078-0432.CCR-09-2594.
  • De Sousa E., Melo F., Wang X., Jansen M., Fessler E., Trinh A., de Rooij L.P., de Jong J.H., de Boer O.J., van Leersum R., Bijlsma M.F., Rodermond H., van der Heijden M., van Noesel C.J., Tuynman J.B., Dekker E., Markowetz F., Medema J.P., Vermeulen L. Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat Med. 2013 May; 19(5): 614-8. https://doi.org/10.1038/nm.3174.
  • Schlicker A., Beran G., Chresta C.M., McWalter G., Pritchard A., Weston S., Runswick S., Davenport S., Heathcote K., Castro D.A., Orphanides G., French T., Wessels L.F. Subtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell lines. BMC Med Genomics. 2012 Dec 31; 5: 66. https://doi.org/10.1186/1755-8794-5-66.
  • Budinska E., Popovici V., Tejpar S., D'Ario G., Lapique N., Sikora K.O., Di Narzo A.F., Yan P., Hodgson J.G., Weinrich S., Bosman F., Roth A., Delorenzi M. Gene expression patterns unveil a new level of molecular heterogeneity in colorectal cancer. J Pathol. 2013 Sep; 231(1): 63-76. https://doi.org/10.1002/path.4212.
  • Roepman P., Schlicker A., Tabernero J., Majewski I., Tian S., Moreno V., Snel M.H., Chresta C.M., Rosenberg R., Nitsche U., Macarulla T., Capella G., Salazar R., Orphanides G., Wessels L.F., Bernards R., Simon I.M. Colorectal cancer intrinsic subtypes predict chemotherapy benefit, deficient mismatch repair and epithelial-to-mesenchymal transition. Int J Cancer. 2014 Feb 1; 134(3): 552-62. https://doi.org/10.1002/ijc.28387.
  • Marisa L., de Reyniès A., Duval A., Selves J., Gaub M.P., Vescovo L., Etienne-Grimaldi M.C., Schiappa R., Guenot D., Ayadi M., Kirzin S., Chazal M., Fléjou J.F., Benchimol D., Berger A., Lagarde A., Pencreach E., Piard F., Elias D., Parc Y., Olschwang S., Milano G., Laurent- Puig P., Boige V. Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med. 2013; 10(5): e1001453. https://doi.org/10.1371/journal.pmed.1001453.
  • Sadanandam A., Lyssiotis C.A., Homicsko K., Collisson E.A., Gibb W.J., Wullschleger S., Ostos L.C., Lannon W.A., Grotzinger C., Del Rio M., Lhermitte B., Olshen A.B., Wiedenmann B., Cantley L.C., Gray J.W., Hanahan D. A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat Med. 2013 May; 19(5): 619-25. https://doi.org/10.1038/nm.3175.
  • Guinney J., Dienstmann R., Wang X., de Reyniès A., Schlicker A., Soneson C., Marisa L., Roepman P., Nyamundanda G., Angelino P., Bot B.M., Morris J.S., Simon I.M., Gerster S., Fessler E., De Sousa F., Melo E., Missiaglia E., Ramay H., Barras D., Homicsko K., Maru D., Manyam G.C., Broom B., Boige V., Perez Villamil B., Laderas T., Salazar R., Gray J.W., Hanahan D., Tabernero J., Bernards R., Friend S.H., Laurent-Puig P., Medema J.P., Sadanandam A., Wessels L., Delorenzi M., Kopetz S., Vermeulen L., Tejpar S. The consensus molecular subtypes of colorectal cancer. Nat Med . 2015 Nov; 21(11): 1350-6. https://doi.org/10.1038/nm.3967.
  • Gurzu S., Silveanu C., Fetyko A., Butiurca V., Kovacs Z., Jung I. Systematic review of the old and new concepts in the epithelial-mesenchymal transition of colorectal cancer. World J Gastroenterol. 2016 Aug 14; 22(30): 6764-75. https://doi.org/10.3748/wjg.v22.i30.6764.
  • Cao H., Xu E., Liu H., Wan L., Lai M. Epithelial-mesenchymal transition in colorectal cancer metastasis: A system review. Pathol Res Pract. 2015 Aug; 211(8): 557-69. https://doi.org/10.1016/j.prp.2015.05.010.
  • Roseweir A.K., Kong C.Y., Park J.H., Bennett L., Powell A.G.M.T., Quinn J., van Wyk H.C., Horgan P.G., McMillan D.C., Edwards J., Roxburgh C.S. A novel tumor- based epithelial-to-mesenchymal transition score that associates with prognosis and metastasis in patients with Stage II/III colorectal cancer. Int J Cancer. 2019 Jan 1; 144(1): 150-159. https://doi.org/10.1002/ijc.31739.
  • King G.T., Lieu C.H., Messersmith W.A. Frontline Strategies for Metastatic Colorectal Cancer: New Sides to the Story. Am J Hematol Oncol. 2017; 12(10): 4-11.
  • Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012 Jul 18; 487(7407): 330-7. https://doi.org/10.1038/nature11252.
  • van Lier M.G., Wagner A., van Leerdam M.E., Biermann K., Kuipers E.J., Steyerberg E.W., Dubbink H.J., Dinjens W.N. A review on the molecular diagnostics of Lynch syndrome: a central role for the pathology laboratory. J Cell Mol Med. 2010; 14(1-2): 181-97. https://doi.org/10.1111/j.1582-4934.2009.00977.x.
  • Zaanan A., Meunier K., Sangar F., Fléjou J.F., Praz F. Microsatellite instability in colorectal cancer: from molecular oncogenic mechanisms to clinical implications. Cell Oncol (Dordr). 2011 Jun; 34(3): 155-76. https://doi.org/10.1007/s13402-011-0024-x.
  • Popat S., Hubner R., Houlston R.S. Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol. 2005 Jan 20; 23(3): 609-18. https://doi.org/10.1200/JCO.2005.01.086.
  • Goel A., Nagasaka T., Hamelin R., Boland C.R. An optimized pentaplex PCR for detecting DNA mismatch repair-deficient colorectal cancers. PLoS One. 2010 Feb 24; 5(2): e9393. https://doi.org/10.1371/journal.pone.0009393.
  • Kikuchi T., Mimura K., Okayama H., Nakayama Y., Saito K., Yamada L., Endo E., Sakamoto W., Fujita S., Endo H., Saito M., Momma T., Saze Z., Ohki S., Kono K. A subset of patients with MSS/MSI-low-colorectal cancer showed increased CD8(+) TILs together with up-regulated IFN-γ. Oncol Lett. 2019 Dec; 18(6): 5977-5985. https://doi.org/10.3892/ol.2019.10953.
  • Ryan E., Sheahan K., Creavin B., Mohan H.M., Winter D.C. The current value of determining the mismatch repair status of colorectal cancer: A rationale for routine testing. Crit Rev Oncol Hematol. 2017 Aug; 116: 38-57. https://doi.org/10.1016/j.critrevonc.2017.05.006.
  • Yuan L., Chi Y., Chen W., Chen X., Wei P., Sheng W., Zhou X., Shi D. Immunohistochemistry and microsatellite instability analysis in molecular subtyping of colorectal carcinoma based on mismatch repair competency. Int J Clin Exp Med. 2015 Nov 15; 8(11): 20988-1000.
  • Sidaway P. Immunoscore provides a more accurate prognosis. Nat Rev Clin Oncol. 2018 Aug; 15(8): 471. https://doi.org/10.1038/s41571-018-0050-y.
  • Mlecnik B., Bindea G., Angell H.K., Maby P., Angelova M., Tougeron D., Church S.E., Lafontaine L., Fischer M., Fredriksen T., Sasso M., Bilocq A.M., Kirilovsky A., Obenauf A.C., Hamieh M., Berger A., Bruneval P., Tuech J.J., Sabourin J.C., Le Pessot F., Mauillon J., Rafii A., Laurent-Puig P., Speicher M.R., Trajanoski Z., Michel P., Sesboüe R., Frebourg T., Pagès F., Valge-Archer V., Latouche J.B., Galon J. Integrative Analyses of Colorectal Cancer Show Immunoscore Is a Stronger Predictor of Patient Survival Than Microsatellite Instability. Immunity. 2016 Mar 15; 44(3): 698-711. https://doi.org/10.1016/j.immuni.2016.02.025.
  • Cortes-Ciriano I., Lee S., Park W.Y., Kim T.M., Park P.J. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun. 2017; 8: 15180. https://doi.org/10.1038/ncomms15180.
  • Liu S.S., Yang Y.Z., Jiang C., Quan Q., Xie Q.K., Wang X.P., He W.Z., Rong Y.M., Chen P., Yang Q., Yang L., Zhang B., Xia X.J., Kong P.F., Xia L.P. Comparison of immunological characteristics between paired mismatch repair-proficient and -deficient colorectal cancer patients. J Transl Med. 2018 Jul 13; 16(1): 195. https://doi.org/10.1186/s12967-018-1570-z.
  • Mlecnik B., van den Eynde M., Bindea G., Church S.E., Vasaturo A., Fredriksen T., Lafontaine L., Haicheur N., Marliot F., Debetancourt D., Pairet G., Jouret-Mourin A., Gigot J.F., Hubert C., Danse E., Dragean C., Carrasco J., Humblet Y., Valge-Archer V., Berger A., Pagès F., Machiels J.P., Galon J. Comprehensive Intrametastatic Immune Quantification and Major Impact of Immunoscore on Survival. J Natl Cancer Inst. 2018 Jan 1; 110(1). https://doi.org/10.1093/jnci/djx123.
  • Kang S., Na Y., Joung S.Y., Lee S.I., Oh S.C., Min B.W. The significance of microsatellite instability in colorectal cancer after controlling for clinicopathological factors. Medicine (Baltimore). 2018 Mar; 97(9): e0019. https://doi.org/10.1097/MD.0000000000010019.
  • Gatalica Z., Vranic S., Xiu J., Swensen J., Reddy S. High microsatellite instability (MSI-H) colorectal carcinoma: a brief review of predictive biomarkers in the era of personalized medicine. Fam Cancer. 2016 Jul; 15(3): 405-12. https://doi.org/10.1007/s10689-016-9884-6.
  • Bittoni A., Sotte V., Meletani T., Cantini L., Giampieri R., Berardi R. Immunotherapy in colorectal cancer treatment: actual landscape and future perspectives. J Cancer Metastasis Treat. 2018; 4: 55.
  • Fabrizio D.A., George T.J.Jr., Dunne R.F., Frampton G., Sun J., Gowen K., Kennedy M., Greenbowe J., Schrock A.B., Hezel A.F., Ross J.S., Stephens P.J., Ali S.M., Miller V.A., Fakih M., Klempner S.J. Beyond microsatellite testing: assessment of tumor mutational burden identifies subsets of colorectal cancer who may respond to immune checkpoint inhibition. J Gastrointest Oncol. 2018 Aug; 9(4): 610-617. https://doi.org/10.21037/jgo.2018.05.06.
  • Pai S.G., Carneiro B.A., Chae Y.K., Costa R.L., Kalyan A., Shah H.A., Helenowski I., Rademaker A.W., Mahalingam D., Giles F.J. Correlation of tumor mutational burden and treatment outcomes in patients with colorectal cancer. J Gastrointest Oncol. 2017; 8(5): 858-66. https://doi.org/10.21037/jgo.2017.06.20.
  • Mouw K.W., Goldberg M.S., Konstantinopoulos P.A., D'Andrea A.D. DNA Damage and Repair Biomarkers of Immunotherapy Response. Cancer Discov. 2017 Jul; 7(7): 675-693. https://doi.org/10.1158/2159-8290.CD-17-0226.
  • Olea-Flores M., Zuñiga-Eulogio M.D., Mendoza-Catalán M.A., Rodríguez-Ruiz H.A., Castañeda-Saucedo E., Ortuño-Pineda C., PadillaBenavides T., Navarro-Tito N. Extracellular-Signal Regulated Kinase: A Central Molecule Driving Epithelial-Mesenchymal Transition in Cancer. Int J Mol Sci. 2019 Jun 13; 20(12): 2885. https://doi.org/10.3390/ijms20122885.
  • Dalerba P., Sahoo D., Paik S., Guo X., Yothers G., Song N., Wilcox-Fogel N., Forgó E., Rajendran P.S., Miranda S.P., Hisamori S., Hutchison J., Kalisky T., Qian D., Wolmark N., Fisher G.A., van de Rijn M., Clarke M.F. CDX2 as a Prognostic Biomarker in Stage II and Stage III Colon Cancer. N Engl J Med. 2016 Jan 21; 374(3): 211-22. https://doi.org/10.1056/NEJMoa1506597.
  • Vellinga T.T., den Uil S., Rinkes I.H., Marvin D., Ponsioen B., Alvarez-Varela A., Fatrai S., Scheele C., Zwijnenburg D.A., Snippert H., Vermeulen L., Medema J.P., Stockmann H.B., Koster J., Fijneman R.J., de Rooij J., Kranenburg O. Collagen-rich stroma in aggressive colon tumors induces mesenchymal gene expression and tumor cell invasion. Oncogene. 2016 Oct 6; 35(40): 5263-5271. https://doi.org/10.1038/onc.2016.60.
  • Ebrahimkhani M.R., Oakley F., Murphy L.B., Mann J., Moles A., Perugorria M.J., Ellis E., Lakey A.F., Burt A.D., Douglass A., Wright M.C., White S.A., Jaffré F., Maroteaux L., Mann D.A. Stimulating healthy tissue regeneration by targeting the 5-HT-B receptor in chronic liver disease. Nat Med. 2011 Nov 27; 17(12): 1668-73. https://doi.org/10.1038/nm.2490.
  • Puisieux A., Brabletz T., Caramel J. Oncogenic roles of EMTinducing transcription factors. Nat Cell Biol. 2014; 16(6): 488-94. https://doi.org/10.1038/ncb2976.
  • Papageorgis P. TGFβ Signaling in Tumor Initiation, Epithelial-toMesenchymal Transition, and Metastasis. J Oncol. 2015; 2015: 587193. https://doi.org/10.1155/2015/587193.
  • Karihtala P., Auvinen P., Kauppila S., Haapasaari K.M., JukkolaVuorinen A., Soini Y. Vimentin, zeb1 and Sip1 are up-regulated in triplenegative and basal-like breast cancers: association with an aggressive tumour phenotype. Breast Cancer Res Treat. 2013 Feb; 138(1): 81-90. https://doi.org/10.1007/s10549-013-2442-0.
  • Liu Y., Lu X., Huang L., Wang W., Jiang G., Dean K.C., Clem B., Telang S., Jenson A.B., Cuatrecasas M., Chesney J., Darling D.S., Postigo A., Dean D.C. Different thresholds of ZEB1 are required for Ras-mediated tumour initiation and metastasis. Nat Commun. 2014 Dec 1; 5: 5660. https://doi.org/10.1038/ncomms6660.
  • Spaderna S., Schmalhofer O., Hlubek F., Berx G., Eger A., Merkel S., Jung A., Kirchner T., Brabletz T. A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology. 2006 Sep; 131(3): 830-40. https://doi.org/10.1053/j.gastro.2006.06.016.
  • Sánchez-Tilló E., Fanlo L., Siles L., Montes-Moreno S., Moros A., Chiva-Blanch G., Estruch R., Martinez A., Colomer D., Győrffy B., Roué G., Postigo A. The EMT activator ZEB1 promotes tumor growth and determines differential response to chemotherapy in mantle cell lymphoma. Cell Death Differ. 2014 Feb; 21(2): 247-57. https://doi.org/10.1038/cdd.2013.123.
  • Guo C., Ma J., Deng G., Qu Y., Yin L., Li Y., Han Y., Cai C., Shen H., Zeng S. ZEB1 Promotes Oxaliplatin Resistance through the Induction of Epithelial-Mesenchymal Transition in Colon Cancer Cells. J Cancer. 2017 Sep 30; 8(17): 3555-3566. https://doi.org/10.7150/jca.20952.
  • Gunn-Moore F.J., Welsh G.I., Herron L.R., Brannigan F., Venkateswarlu K., Gillespie S., Brandwein-Gensler M., Madan R., Tavaré J.M., Brophy P.J., Prystowsky M.B., Guild S. A novel 4.1 ezrin radixin moesin (FERM)-containing protein, ‘Willin’. FEBS Lett. 2005 Sep 12; 579(22): 5089-94. https://doi.org/10.1016/j.febslet.2005.07.097.
  • Olsen J., Espersen M.L., Jess P., Kirkeby L.T., Troelsen J.T. The clinical perspectives of CDX2 expression in colorectal cancer: a qualitative systematic review. Surg Oncol. 2014; 23(3): 167-76. https://doi.org/10.1016/j.suronc.2014.07.003.
  • Bruun J., Sveen A., Barros R., Eide P.W., Eilertsen I., Kolberg M., Pellinen T., David L., Svindland A., Kallioniemi O., Guren M.G., Nesbakken A., Almeida R., Lothe R.A. Prognostic, predictive, and pharmacogenomic assessments of CDX2 refine stratification of colorectal cancer. Mol Oncol. 2018 Sep; 12(9): 1639-1655. https://doi.org/10.1002/1878-0261.12347.
  • De Palma F.D.E., D'Argenio V., Pol J., Kroemer G., Maiuri M.C., Salvatore F. The Molecular Hallmarks of the Serrated Pathway in Colorectal Cancer. Cancers (Basel). 2019 Jul 20; 11(7): 1017. https://doi.org/10.3390/cancers11071017.
  • Kikuchi T., Mimura K., Okayama H., Nakayama Y., Saito K., Yamada L., Endo E., Sakamoto W., Fujita S., Endo H., Saito M., Momma T., Saze Z., Ohki S., Kono K. A subset of patients with MSS/MSI-low-colorectal cancer showed increased CD8(+) TILs together with up-regulated IFN-γ. Oncol Lett. 2019 Dec; 18(6): 5977-5985. https://doi.org/10.3892/ol.2019.10953.
Еще
Статья обзорная