Прогнозирование на фондовых рынках с использованием формализма статистической механики

Бесплатный доступ

Аналитически исследована возможность и целесообразность прогнозирования на фондовых рынках с помощью методов и подходов статистической механики. Аппарат статистической механики применен для анализа и прогноза одного из важнейших показателей рынка – распределения логарифмической доходности. В качестве исходной модели использована модель Лотки-Вольтерра, применяемая в экологии для описания систем типа «хищник-жертва». Она адекватно аппроксимирует динамику рынка. В статье использована ее гамильтоновость, позволяющая применить аппарат статистической механики. Аппарат статистической механики (с использованием принципа максимальной энтропии) позволяет реализовать вероятностный подход, который адаптирован к условиям неопределенности фондового рынка. Канонические переменные гамильтониана представлены в виде логарифмов цен акций и облигаций, совместная функция распределения вероятности цен акций и облигаций получена в виде распределения Гиббса. Больцмановский фактор, входящий в распределение Гиббса, позволяет оценить вероятность появления тех или иных цен на акции и облигации и получить аналитическое выражение для вычисления логарифмической доходности, дающее более точные результаты, чем широко используемое нормальное (Гауссово) распределение. По своим характеристикам полученное распределение напоминает распределение Лапласа. Вычислены основные характеристики полученного распределения – среднее значение, дисперсия, асимметрия, эксцесс. Математические результаты представлены графически. Дано объяснение причинно-следственного механизма, вызывающего изменение доходности рынка. Для этого развита идея Теодора Модиса о конкуренции между акциями и облигациями за внимание и деньги инвесторов (по аналогии с оборотом биомассы в моделях типа «хищник-жертва» в биологии). Результаты исследования представляют интерес для инвесторов, теоретиков и практиков фондового рынка. Они позволяют принимать продуманные и взвешенные решения по инвестированию за счет более реального представления об ожидаемой доходности и более адекватной оценки инвестиционного риска.

Еще

Динамика фондового рынка, функция распределения доходности, принцип максимальной энтропии, распределение Гиббса, распределение Лапласа

Короткий адрес: https://sciup.org/14128230

IDR: 14128230   |   DOI: 10.15622/ia.22.6.9

Статья