Progress in research on the technology of obtaining inorganic oxide semiconductors from type P copper (I) oxide

Автор: Ren Bingbing, Mindrov Konstantin

Журнал: Бюллетень науки и практики @bulletennauki

Рубрика: Технические науки

Статья в выпуске: 8 т.8, 2022 года.

Бесплатный доступ

As a representative intrinsic type P inorganic semiconductor material, copper (I) oxide Cu2O has been widely used in photovoltaic, catalysis, chemical industries and other fields, and has an extremely important position. For a long time, the literature on the preparation method and preparation technology of Cu2O is relatively scattered and independent, resulting in a certain degree of obstacles and difficulty in obtaining relevant technical knowledge and understanding its internal principles. Aiming at the progress and innovation of Cu2O preparation methods and technology in recent years, combined with the team’s long-term experience accumulation and research results, this article focuses on the classification, principles and characteristics of Cu2O preparation methods, and the optimization methods and development directions of Cu2O preparation technology. The outlook was carried out. This review aims to provide reference and guidance for the preparation and research of Cu2O and other related inorganic oxide semiconductors.

Еще

Copper (i) oxide, inorganic oxide, type p semiconductor

Короткий адрес: https://sciup.org/14125294

IDR: 14125294   |   DOI: 10.33619/2414-2948/81/26

Список литературы Progress in research on the technology of obtaining inorganic oxide semiconductors from type P copper (I) oxide

  • Khan, S. U., Al-Shahry, M., & Ingler Jr, W. B. (2002). Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 297(5590), 2243-2245. https://doi.org/10.1126/science.1075035
  • Shim, M., & Guyot-Sionnest, P. (2001). Organic-capped ZnO nanocrystals: synthesis and n-type character. Journal of the American Chemical Society, 123(47), 11651-11654. https://doi.org/10.1021/ja0163321
  • Wei, Y. L., Rong, B., Chen, X., Ding, Y. Y., Huang, Y. F., Fan, L. Q., & Wu, J. H. (2021). Porous and visible-light-driven p-n heterojunction constructed by Bi2O3 nanosheets and WO3 microspheres with enhanced photocatalytic performance. Separation and Purification Technology, 256, 117815. https://doi.org/10.10167j.seppur.2020.117815
  • Al-Douri, Y., Amrane, N., & Johan, M. R. (2019). Annealing temperature effect on structural and optical investigations of Fe2O3 nanostructure. Journal of Materials Research and Technology, 5(2), 2164-2169. https://doi.org/10.1016/jjmrt.2019.02.004
  • Rej, S., Bisetto, M., Naldoni, A., & Fornasiero, P. (2021). Well-defined Cu 2 O photocatalysts for solar fuels and chemicals. Journal of Materials Chemistry A, 9(10), 5915-5951. https://doi.org/10.1039/D0TA10181H
  • Zhou, M., Guo, Z., & Liu, Z. (2020). FeOOH as hole transfer layer to retard the photocorrosion of Cu2O for enhanced photoelctrochemical performance. Applied Catalysis B: Environmental, 260, 118213. https://doi.org/10.1016Zj.apcatb.2019.118213
  • Cao, D., Nasori, N., Wang, Z., Wen, L., Xu, R., Mi, Y., & Lei, Y. (2016). Facile surface treatment on Cu2O photocathodes for enhancing the photoelectrochemical response. Applied CatalysisB: Environmental, 198, 398-403. https://doi.org/10.1016/j.apcatb.2016.06.010
  • Grondahl, L. O. (1933). The copper-cuprous-oxide rectifier and photoelectric cell. Reviews of Modern Physics, 5(2), 141. https://doi.org/10.1103/RevModPhys.5.141
  • Olsen, L. C., Bohara, R. C., & Urie, M. W. (1979). Explanation for low-efficiency Cu2O Schottky-barrier solar cells. Applied physics letters, 34(1), 47-49. https://doi.org/10.1063/L90593
  • Musa, A. O., Akomolafe, T., & Carter, M. J. (1998). Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties. Solar Energy Materials and Solar Cells, 51(3-4), 305-316. https://doi.org/10.1016/S0927-0248(97)00233-X
  • Hong, X., Wang, G., Zhu, W., Shen, X., & Wang, Y. (2009). Synthesis of sub-10 nm Cu2O nanowires by poly (vinyl pyrrolidone)-assisted electrodeposition. The Journal of Physical Chemistry C, 113(32), 14172-14175. https://doi.org/10.1021/jp9039786
  • Li, Y., Zhang, X., Chen, H., & Li, Y. (2015). Thermal conversion synthesis of Cu2O photocathode and the promoting effects of carbon coating. Catalysis Communications, 66, 1-5. https://doi .org/10.1016/j. catcom.2015.03.007
  • Luo, J., Steier, L., Son, M. K., Schreier, M., Mayer, M. T., & Grätzel, M. (2016). Cu2O nanowire photocathodes for efficient and durable solar water splitting. Nano letters, 16(3), 18481857. https://doi.org/10.1021/acs.nanolett.5b04929
  • Kobayashi, H., Nakamura, T., & Takahashi, N. (2007). Preparation of Cu2O films on MgO (1 1 0) substrate by means of halide chemical vapor deposition under atmospheric pressure. Materials Chemistry and Physics, 106(2-3), 292-295. https://doi.org/10.1016/j.matchemphys.2007.06.008
  • Kim, H., Lee, M. Y., Kim, S. H., Bae, S. I., Ko, K. Y., Kim, H., ... & Lee, D. J. (2015). Highly-conformal p-type copper (I) oxide (Cu2O) thin films by atomic layer deposition using a fluorine-free amino-alkoxide precursor. Applied Surface Science, 349, 673-682. https://doi.org/10.1016/j.apsusc.2015.05.062
  • Li, B. S., Akimoto, K., & Shen, A. (2009). Growth of Cu2O thin films with high hole mobility by introducing a low-temperature buffer layer. Journal of Crystal Growth, 311(4), 11021105. https://doi.org/10.10167j.jcrysgro.2008.11.038
  • Lee, Y. S., Winkler, M. T., Siah, S. C., Brandt, R., & Buonassisi, T. (2011). Hall mobility of cuprous oxide thin films deposited by reactive direct-current magnetron sputtering. Applied Physics Letters, 93(19), 192115. https://doi.org/10.106371.3589810
  • Markose, K., Shaji, M., Bhatia, S., Nair, P. R., Saji, K. J., Antony, A., & Jayaraj, M. K. (2020). Novel boron-doped p-type Cu2O thin films as a hole-selective contact in c-Si solar cells. ACS applied materials & interfaces, 12(11), 12972-12981. https://doi.org/10.1021/acsami.9b22581
  • Noda, S., Shima, H., & Akinaga, H. (2013, April). Cu2O/ZnO heterojunction solar cells fabricated by magnetron-sputter deposition method films using sintered ceramics targets. In Journal of Physics: Conference Series (Vol. 433, No. 1, p. 012027). IOP Publishing.
  • Ivill, M., Overberg, M. E., Abernathy, C. R., Norton, D. P., Hebard, A. F., Theodoropoulou, N., & Budai, J. D. (2003). Properties of Mn-doped Cu2O semiconducting thin films grown by pulsedlaser deposition. Solid-State Electronics, 47(12), 2215-2220. https://doi.org/10.1016/S0038-1101(03)00200-4
  • Lee, S., Liang, C. W., & Martin, L. W. (2011). Synthesis, control, and characterization of surface properties of Cu2O nanostructures. ACS nano, 5(5), 3736-3743. https://doi.org/10.1021/nn2001933
  • Chen, A., Long, H., Li, X., Li, Y., Yang, G., & Lu, P. (2009). Controlled growth and characteristics of single-phase Cu2O and CuO films by pulsed laser deposition. Vacuum, 83(6), 927930. https://doi.org/10.1016/j.vacuum.2008.10.003
  • Liu, X., Xu, M., Zhang, X., Wang, W., Feng, X., & Song, A. (2018). Pulsed-laser-deposited, single-crystalline Cu2O films with low resistivity achieved through manipulating the oxygen pressure. Applied Surface Science, 435, 305-311. https://doi.org/10.1016/j.apsusc.2017.11.119
  • Gou, L., & Murphy, C. J. (2003). Solution-phase synthesis of Cu2O nanocubes. Nano Letters, 3(2), 231-234. https://doi.org/10.1021/nl0258776
  • Li, Y., Yun, X., Chen, H., Zhang, W., & Li, Y. (2016). Facet-selective charge carrier transport, deactivation mechanism and stabilization of a Cu 2 O photo-electro-catalyst. Physical Chemistry Chemical Physics, 18(10), 7023-7026. https://doi.org/10.1039/C6CP00297H
  • Wei, M., & Huo, J. (2010). Preparation of Cu2O nanorods by a simple solvothermal method. Materials Chemistry and Physics, 121(1-2), 291-294. https://doi.org/10.1016/j.matchemphys.2010.01.036
  • Tan, C. S., Hsu, S. C., Ke, W. H., Chen, L. J., & Huang, M. H. (2015). Facet-dependent electrical conductivity properties of Cu2O crystals. Nano letters, 15(3), 2155-2160. https://doi.org/10.1021/acs.nanolett.5b00150
  • Liu, W., Zhu, Z., Deng, K., Li, Z., Zhou, Y., Qiu, H., ... & Tang, Z. (2013). Gold nanorod@ chiral mesoporous silica core-shell nanoparticles with unique optical properties. Journal of the American Chemical Society, 135(26), 9659-9664. https://doi.org/10.1021/ja312327m
  • Zhang, Z., & Wang, P. (2012). Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy. Journal of Materials Chemistry, 22(6), 2456-2464. https://doi.org/10.1039/C1JM14478B
  • Siegfried, M. J., & Choi, K. S. (2005). Directing the architecture of cuprous oxide crystals during electrochemical growth. Angewandte Chemie, 117(21), 3282-3287. https://doi.org/10.1002/ange.200463018
  • Mizuno, K., Izaki, M., Murase, K., Shinagawa, T., Chigane, M., Inaba, M., ... & Awakura, Y. (2005). Structural and electrical characterizations of electrodeposited p-type semiconductor Cu2O films. Journal of The Electrochemical Society, 152(4), C179.
  • Bijani, S., Martinez, L., Gabâs, M., Dalchiele, E. A., & Ramos-Barrado, J. R. (2009). Low-temperature electrodeposition of Cu2O thin films: modulation of micro-nanostructure by modifying the applied potential and electrolytic bath pH. The Journal of Physical Chemistry C, 113(45), 1948219487. https://doi.org/10.1021/jp905952a
  • Paracchino, A., Laporte, V., Sivula, K., Grätzel, M., & Thimsen, E. (2011). Highly active oxide photocathode for photoelectrochemical water reduction. Nature materials, 10(6), 456-461. https://doi.org/10.1038/nmat3017
  • Paracchino, A., Brauer, J. C., Moser, J. E., Thimsen, E., & Graetzel, M. (2012). Synthesis and characterization of high-photoactivity electrodeposited Cu2O solar absorber by photoelectrochemistry and ultrafast spectroscopy. The Journal of Physical Chemistry C, 116(13), 7341-7350. https://doi.org/10.1021/jp301176y
  • Li, Y., Zhong, X., Luo, K., & Shao, Z. (2019). A hydrophobic polymer stabilized p-Cu 2 O nanocrystal photocathode for highly efficient solar water splitting. Journal of Materials Chemistry A, 7(26), 15593-15598. https://doi.org/10.1039/C9TA04822G
  • Li, Y., & Luo, K. (2019). Performance improvement of a p-Cu 2 O nanocrystal photocathode with an ultra-thin silver protective layer. Chemical Communications, 55(67), 9963-9966. https://doi.org/10.1039/C9CC04994K
  • Li, Y., Luo, K., Tao, R., Wang, Z., Chen, D., & Shao, Z. (2020). A new concept and strategy for photovoltaic and thermoelectric power generation based on anisotropic crystal facet unit. Advanced Functional Materials, 30(28), 2002606. https://doi.org/10.1002/adfm.202002606
Еще
Статья научная