Hypometabolic effect in sportsmen respiratory system reactions to physical load adaptation in middle altitude

Автор: Portnichenko V.I., Ilin V.N., Filippov M.M.

Журнал: Ульяновский медико-биологический журнал @medbio-ulsu

Рубрика: Физиология

Статья в выпуске: 2, 2017 года.

Бесплатный доступ

The problem of altitude training for athletes without leading aerobic capacity remains controversial and badly studied. However, training camps are usually situated in mid-mountain areas. Thus, athletes are expected to get a positive effect in expanding their functional. In this context, sport physiologists are still interested in physiological mechanisms involved in physical activity during athletes’ adaptation to physical loads at middle altitude. Objective. The main purpose of the study is to examine the characteristics of respiratory system and energy metabolism in athletes under physical load during adaptation to staying in middle mountains. Materials and Methods. Twelve wrestlers were examined at the beginning (2nd day) and at the end (21st day) of staying in training camps in Elbrus region (2100 m a.s.l.) The authors registered gas exchange and pulmonary ventilation in athletes subjected to stepwise increasing workloads after 5 minute-work on the bicycle ergometer and during recovery period (10 min). The contribution of aerobic and anaerobic components in the energy metabolism under physical load was calculated. Statistical analysis was performed using software packages SPSS 21.0 (IBM) and Microsoft Exсel 2010. Results. The changes in oxygen consumption on exertion and during recovery periods at the beginning and at the end of staying at a training camp were similar. However, the repeated examination showed increased rate of transient processes, and decreased oxygen cost of work. These indices evidenced hypometabolic changes in energy metabolism. It was revealed that at the beginning of exercise lung diffusing capacity dramatically decreased. The efficiency of pulmonary gas exchange increased as a result of active adaptation. At the same time, O2 ventilation equivalent decreased. The combined effect of hypobaric hypoxia and loading hypoxia proved to extend body functional, while training effects are achieved due to remodeling of energy resources.

Еще

Adaptation, physical load, hypometabolism, aerobic and anaerobic metabolism, external respiration, gas exchange, athletes, middle altitude

Короткий адрес: https://sciup.org/14113267

IDR: 14113267   |   DOI: 10.23648/UMBJ.2017.26.6226

Статья научная