Properties of Hom and tenzor product

Автор: Samatboyeva M.T.

Журнал: Экономика и социум @ekonomika-socium

Рубрика: Основной раздел

Статья в выпуске: 10 (89), 2021 года.

Бесплатный доступ

The article presents the notion of Hom and tenzor product as well as several intriguing properties of them that are related

Hom, tenzor product, free group, quotient group, universal property, middle linear, initial object.

Короткий адрес: https://sciup.org/140260771

IDR: 140260771

Текст научной статьи Properties of Hom and tenzor product

  • 1.     Objects are middle linear maps on A x B , i.e { f : A x B ^ }

  • 2.     Morphisms between f : A x B ^ C and g : A x B ^ D is a group

homomorphism h : C ^ D s.t the diagram is commutative: g =

An initial object in M(A,B), if it exists, has the universal property: V(f,C)gOb(M(A,B)) there exists a:init.ob^(f,C) s.t the diagram commutes. This means that if we denote the initial object by (i, A ® B) then we have A x B-^A ® B ДC and f = a . A g ModR,B g RMod, F be a free i                        ∀f abelian group on the set A×B. That is A×B→F and A×B→∀C ∈ Ab , then 3h: F ^ C an abelian group homomorphism s.t f = ho .

The elements of F are ( a , b ),( a , b ) + ( a 2, b 2),...

Definition: Let K be a subgroup of F generated by all elements of the following form:        (1) ( a + a , b ) - ( a , b ) - ( a ', b )                          (2)

( a , b + b ') — ( a , b ) ( a , b')                                 (3) ( a . r , b ) ( a , r . b )

The quotient group F / K is called the tensor product of A and B and is denoted A ® B . The coset  ( a , b ) + K of the element ( a , b ) g F is denoted by

R

  • a b . Note that in A B we have

  • (1)    ( a + a ) ® b = a ® b + a ‘® b     (2) a ® ( b + b ') = a ® b + a ® b

  • (3) a . r ® b = a ® r.b       (*)

    Note that    ( a , b ) н

    because of (*) . We call this


K = a ® b is a middle linear map, this is i : A x B ^ A ® B the canonical middle linear map. R

M ( A , B )

A is abelian  group, prove that

( c )□           n mm

  • □       - homomorphism of abelian

fm )   f (1)    f (1) = ma and we

m

  • = ma , so we can define

Now ( i , A ® B ) will be the initial object in

Property :   (a)

Hom(        Am ] : = {a g A | ma = 0}

  • (b) Homp □    □,

gcd( m , n )

Proof: (a) □ m groups. Let f (1) = a ^ f (1_2_+2

m know that

  • 1    • 1    1 о ^ 0 = f (0) = f (ml

m

Ф : Hom (□         A [ m ]

  • s.t      f h^     , it is easy to check being homomorphism:

    /■>           ■>        " = f (1) _ g (1) .

Now we define ^: A[m] ^ Hom(□      s.t a i-^      ) = a (□ has generator 1, so it is enough to define f at 1), ma = 0 ^ f g Hom(□      .

Let k = k ' ^ f ( k ) = f ( 1 1     1 4    'a = ( k '_ mn ) a = k'a = f ( k ') ^

k well-defined.

f ( k _ n ) = ( k _ n ) a = ka _ na = f ( k ) _ f ( n )

and

a _ a '^       ) = a _ a'

a i—>        ) = a           and            a ' н       = a ',     therefore

( g _ h )(1) = g (1) _ h (1) = a _ a ' = f (1) . So g _ h and f are equal at generator , thus they are exactly the same functions.

Now, we consider the composition of these homomorphisms, if they give identity, then Hom (          Am ] : ( ^°         p ( w (a )) = ^ ( a )(1) = a and

( ^ o        ^ ( f (1)) = f

  • ( b )    Hom^  □    □       ,

gcd( m , n )

From (a) we have Hom(□   □     □           □          ■, so it is enough to show that □      □         . Let m = m d, n = n ’ d,(m, n) = 1, we n       gcd( m, n )

have to find k gD      : (we can assume that 0 < k < n -1). In order to accomplish           this            mk n            must           be:

m = m’ dk:                  :         :                ',...,( d 1) n' }

Now    we    can    construct

^:П          0         s.t nd

{0, n ',...,( d - 1) n' } ^D           _,..., d - 1}

d

It is making a sense that kn' + sn = (s + k) n' н       s + k

It is easy to see that ^ is bijective □

kn ' н     and by checking

.

gcd( m , n )

( c ) □           n

m

According to (a) we have □□

□           k = 0} = 0 .

Property : Let A is abelian group. Prove that:

(a) V meD

(b )□     □     □                             (c )□   □□ m    n    gcd( a, n )

Proof:      ( a )   Initially we construct h 0: A xD          ' mA s.t

( a, k )i-> k = k' ^ k = k' + mt                                         and

( a , k ')i->       A = ( k mt ) a + mA = ka tma + mA = ka + mA . Because of

(a, k )i->       4 we get (a, k') = (a, k ). So the function is well-defined. Now we examine that it is middle linear map:

1)( a + a ', k ) H        '') + mA = ( ka + mA) + ( ka' + mA )

2)( a , k + n ) = ( a , k + n ) l-^

a + mA = ( ka + mA ) + ( na + mA )

3)( na , k ) I—»       - mA = ( kn ) a + mA

So, by universal property we get h: A ®Q        ' m which is homomorphism of groups s.t a ® k I—>      A

Now we define g: A / mA ^ A ® □   s.t a + mA I—>     . For simplicity lets define a + mA = [a], then [a] + [b] i-^       ® 1 = a ® I + b ® 1, thus g is homomorphism                       of                       groups.

[ a ] = [ a '] ^ a a ' = ma ",[ a ] = a ® 1 = ( a ' + ma ") ® 1 =

= a® 1 + ma"® 1 = a'® 1 + a"® m 1 = a'® 1 + a"® 0 = a'® 1, thus g is well-defined.

( g0         ) = g ([ ka ]) = ka ® 1 = a ® k

and

( h о

= h ( a ® 1) = [ a ]   ^

a ®D

at generators of A ®D , so

they are equal at full group. g

A ^ A ®D

A / aA       m

(b ) Denote km as class k in □  . h^ : 0    0

Now     we      check     whether     it

mA

0 d s.t ( k m , S n )^ .

is       well-defined:

km = k'm , sn = s ‘ ^ ks = ( k ' + mt )( s ‘ + nl ) = k's' + k'nl + s ' mt + mnlt = k ' s '(mod d )

⇒ks =ks′ . So it is well-defined and now we show it is a middle linear map:

1)( k m + k' m , s n w

sd = ksd + k sd

2)( k m , s n + s П ) = ( k m , s n + s П )^         ^d = ks d + ksd

3)( lkm , sn ) = ( lkm , sn )^

dd

mn d

s.t

h ( k , s ) = ks which is group homomorphism. Let g :□     □     0 s.t

Sd^..... _   _ _  _

  • ( c )    □  □    □      h^ this is a middle linear map, because:

1)( r + r ', s ) I—>         s = rs + rrs and 2)( r , s + s ‘)i—>         ) = rs + rs' ,

3)( nr , s ) = nrs = r ( ns ) ^3 ^ :Q □   □      h->  .               Now

  • у :D D D H     ,      it      is      a      homomorphism      :

( r + s )l->       & 1 = r & 1 + s & 1

Now we will examine their compositions:

  • r s H>          = p - &  1 = p — &  k 1 = p • — • k & 1 = pl & 1 = p - = r s

qk    qk   k qk   k  q k q k

  • r l-^          , consequently, ^ о      ^ and у о

Список литературы Properties of Hom and tenzor product

  • Thomas W. Hungerford, Algebra. 2000, USA.
  • Evan Chen, An Infinitely Large Napkin. August 31, 2020
  • https://artofproblemsolving.com/
Статья научная