Пространственные и временные характеристики четырехволнового преобразователя излучения в параболическом волноводе с резонансной нелинейностью

Автор: Воробьева Елена Владимировна, Ивахник Валерий Владимирович, Капизов Дархан Рахметулович

Журнал: Компьютерная оптика @computer-optics

Рубрика: Дифракционная оптика, оптические технологии

Статья в выпуске: 1 т.47, 2023 года.

Бесплатный доступ

С использованием функции временного отклика, функции размытия точки проанализированы пространственные и временные характеристики вырожденного четырехволнового преобразователя в многомодовом волноводе с резонансной нелинейностью. Для четырехволнового преобразователя при условии одномодовых с равными номерами мод волнами накачки получены зависимости ширины временного отклика от номера моды объектной волны, интенсивности первой волны накачки, длины волновода. Показано, что наибольший вклад в амплитуду объектной волны обусловлен модой волновода, номер которой совпадает с номерами мод одномодовых волн накачки. Для стационарного режима учет пространственной структуры гауссовой волны накачки приводит с уменьшением ширины пучка накачки к монотонному уменьшению с последующим выходом на постоянное значение полуширины модуля функции размытия точки. При одномодовых волнах накачки с равными номерами мод с увеличением номера моды волн накачки наблюдается перераспределение энергии, сосредоточенной в побочных максимумах изображения точечного сигнала, улучшение качества обращения волнового фронта.

Еще

Четырехволновой преобразователь излучения, параболический волновод, резонансная нелинейность, функция размытия точки, временной отклик

Короткий адрес: https://sciup.org/140296258

IDR: 140296258   |   DOI: 10.18287/2412-6179-CO-1199

Список литературы Пространственные и временные характеристики четырехволнового преобразователя излучения в параболическом волноводе с резонансной нелинейностью

  • Turitsyn SK, Bednyakova AE, Fedoruk MP, Papernyi SB, Clements WRL. Inverse four-wave mixing and self-parametric amplification in optical fibre. Nat Photonics 2015; 9: 608-664. DOI: 10.1038INPHOTON.2015.150.
  • Weng Y, He X, Wang J, Pan Z. All-optical ultrafast wavelength and mode converter based on intermodal four-wave mixing in few-mode fibers. Opt Commun 2015; 348: 7-12. DOI: 10.1016Ij.optcom.2015.03.018.
  • Nazemosadat E, Pourbeyram H, Mafi A. Phase matching for spontaneous frequency conversion via four-wave mixing in graded-index multimode optical fibers. J Opt Soc Am B 2016; 33(2): 144-150. DOI: 10.1364/JOSAB.33.000144.
  • Anjum OF, Guasoni M, Horak P, Jung Y, Petropoulos P, Richardson DJ, Parmigiani F. Polarization insensitive four wave mixing based wavelength conversion in few-mode optical fibers. J Lightw Technol 2018; 36(17): 3678-3683. DOI: 10.1109/JLT.2018.2834148.
  • Zhang H, Bigot-Astruc M, Bigot L, Sillard P, Fatome J. Multiple modal and wavelength conversion process of a 10-Gbit/s signal in a 6-LP-mode fiber. Opt Express 2019; 27(11): 15413-15425. DOI: 10.1364/OE.27.015413.
  • Gupta R, Kaler RS. Nonlinear Kerr and intermodal four-wave mixing effect in mode-division multiplexed multimode fiber link. Opt Eng 2019; 58(3): 036108. DOI: 10.1117/1.OE.58.3.036108.
  • Zhang H, Bigot-Astruc M, Sillard P, Fatome J. Spatially multiplexed picosecond pulse-train generation in a 6 LP mode fiber based on multiple four-wave mixings. Appl Opt 2019; 58(31): 8570-8576. DOI: 10.1364/AO.58.008570.
  • Yuan J, Kang Z, Li F, Zhang X, Sang X, Zhou G, Wu Q, Yan B, Wang K, Yu C, Tam HY, Wai PKA. LDemonstra-tion of intermodal four-wave mixing by femtosecond pulses centered at 1550 nm in an air-silica photonic crystal fiber. J Lightw Technol 2017; 35(12): 2385-2390. DOI: 10.1109/JLT.2017.2681183.
  • Yulin AV, Skryabin DV, Russell PSJ. Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion. Opt Lett 2004; 29(20): 2411-2413. DOI: 10.1364/OL.29.002411.
  • Esmaeelpour M, Essiambre RJ, Fontaine NK, Ryf R, Toulouse J, Sun Y, Lingle R. Power fluctuations of intermodal four-wave mixing in few-mode fibers. J Lightw Technol 2017; 35(12): 2429-2435. DOI: 10.1109/JLT.2017.2660459.
  • Mondal P, Bhatia N, Mishra V, Haldar R, Varshney SK. Cascaded Raman and intermodal four-wave mixing in conventional non-zero dispersion-shifted fiber for versatile ultra-broadband continuum generation. J Lightw Technol 2018; 36(12): 2351-2357. DOI: 10.1109/JLT.2018.2809914.
  • Guasoni M, Parmigiani F, Horak P, Fatome J, Richardson DJ. Intermodal four-wave mixing and parametric amplification in kilometer-long multimode fibers. J Lightw Technol 2017; 35(24): 5296-5305. DOI: 10.1109/JLT.2017.2767103.
  • Trägardh J, Pikalek T, Stibürek M, Simpson S, Cifuentes A, Cizmar T. CARS microscopy through a multimode fiber probe with reduced four-wave mixing background. In: Bi-ophotonics congress: Biomedical optics 2022 (Translation-al, Microscopy, OCT, OTS, BRAIN), Technical digest series (Optica Publishing Group, 2022) 2022: JM3A.43. DOI: 10.1364/TRANSLATIONAL.2022.JM3A.43.
  • Voronin ES, Petnikova VM, Shuvalov VV. Use of degenerate parametric processes for wave front correction (review). Soviet Journal of Quantum Electronics 1981; 11(5): 551-561. DOI: 10.1070/QE1981v011n05ABEH006899.
  • Barashkov MS, Matveev IN, Petnikova VM, Umnov AF, Ustinov ND, Shuvalov VV. Compensation of phase distortions in a single-transit wavefront-reversal system with a degenerate four-photon interaction. Soviet Journal of Quantum Electronics 1982; 12(11): 1524-1525. DOI: 10.1070/2FQE1982v012n11ABEH006186.
  • Lukin VP. Adaptive optics in the formation of optical beams and images. Physics-Uspekhi 2014; 57(6): 556-592. DOI: 10.3367/UFNe.0184.201406b.0599.
  • Lukin VP, Kanev FY, Kulagin OV. Possibilities of joint application of adaptive optics technique and nonlinear optical phase conjugation to compensate for turbulent distortions. Quantum Electron 2016; 46(5): 481-484. DOI: 10.1070/QEL15874.
  • Zhou P, Fan D. Terahertz-wave generation by surface-emitted four-wave mixing in optical fiber. Chin Opt Lett 2011; 9(5): 051902. DOI: 10.3788/COL201109.051902.
  • Pourbeyram H, Nazemosadat E, Mafi A. Detailed analysis of amplified spontaneous four-wave mixing in a multimode fiber. Frontiers in Optics 2015: FW5F.3. DOI: 10.1364/FIO.2015.FW5F.3.
  • Chuprina IN, An PP, Zubkova EG, Kovalyuk VV, Kala-chev AA, Goltsman GN. Optimisation of spontaneous four-wave mixing in a ring microcavity. Quantum Electron 2017; 47(10): 887-891. DOI: 10.1070/QEL16511.
  • Lera G, Nieto-Vesperinas M. Phase conjugation by four-wave mixing of statistical beams. Phys Rev A 1990; 41(11): 6400-6405. DOI: 10.1103/PhysRevA.41.6400.
  • Erokhin AI, Kovalev VI, Miheev PA, Faizullov FS. Quality of wavefront reversal of multifrequency radiation by four-wave interaction. Soviet Journal of Quantum Electronics 1985; 15(1): 116-119. DOI: 10.1070/QE1985v015n01ABEH005879.
  • Ben' VN, Bondarenko SV, Ivakin EV, Rubanov AS. Influence of the angular selectivity on imaging properties of a four-wave wavefront-reversing mirror. Soviet Journal of Quantum Electronics 1987; 17(2): 239-241. DOI: 10.1070/QE1987v017n02ABEH007248.
  • Arutunyan VM, Agadjanyan SA, Muradyan A, Oganyan AA, Papazyan TA. Efficiency and quality investigation of the phase conjugation of degenerate four-wave parametric mixing of picosecond pulses in a resonance dye. Opt Commun 1984; 50(3): 123-126. DOI: 10.1016/0030-4018(84)90148-2.
  • Il'inykh PN, Kovalev VI, Suvorov MB. Spatial characteristics of a beam and quality of phase conjugation of radiation from a CO2 laser with InAs in its resonator. Soviet Journal of Quantum Electronics 1990; 20(6): 609-612. DOI: 10.1070/QE1990v020n06ABEH006623.
  • Ivleva LI, Korol'kov SA, Lyubomudrov OV, Mamaev AV, Polozkova NM, Shkunov VV. Efficiency and quality of four-wave phase conjugation of a signal with a time-dependent spatial structure. Quantum Electron 1995; 25(3), 247-251. DOI: 10.1070/QE1995v025n03ABEH000336.
  • Ill'inskii YA, Petnikova VM. Influence of linear filtering on wavefront reconstruction. Soviet Journal of Quantum Electronics 1980; 10(2): 250-252. DOI: 10.1070/QE1980v010n02ABEH009960.
  • Kirsanov AV, Yarovoi VV. Phase conjugation of a speck-le-inhomogeneous beam by an Nd glass oscillator based on four-wave mixing with feedback. Quantum Electron 1997; 27(3): 239-244. DOI: 10.1070/QE1997v027n03ABEH000910.
  • Betin AA, Ergakov KV, Mitropol'skii OV. Reflection of speckle-inhomogeneous CO2 laser radiation under four-wave interaction conditions with feedback. Quantum Electron 1994; 24(1): 59-62. DOI: 10.1070/QE1994v024n01ABEH000020.
  • Dmitriev VG. Nonlinear optics and wavefront reversal [In Russian]. Moscow: "Fizmatlit" Publisher; 2003. ISBN: 59221-0080-7.
  • Ivakhnik VV. Wavefront reversal at four-wave interactions [In Russian]. Samara: Samara State University; 2010. ISBN: 978-5-86465-471-2.
  • Akimov AA, Vorobeva EV, Ivakhnik VV. The time response of a four-wave converter of radiation on thermal nonlinearity [In Russian]. Computer Optics 2011; 35(4): 462-466.
  • Ivakhnik VV, Savelyev MV. Four-wave mixing in a transparent medium based on electrostriction and Dufour effect at large reflectance. Physics Procedia 2015; 73: 26-32. DOI: 10.1016/j.phpro.2015.09.117.
  • Akimov AA, Ivakhnik VV, Nikonov VI. Four-wave interaction on resonance and thermal nonlinearities in a scheme with concurrent pump wavesat high conversion coefficients. Radiophysics and Quantum Electronics 2015; 57: 672-679. DOI: 10.1007/s11141-015-9553-x.
  • Vorobieva EV, Ivakhnik VV, Luneva MV. Time dependence of the point spread function of a four-wave converter in a waveguide with thermal nonlinearity [In Russian]. Vestnik of Samara University, Natural Science Series 2014; 10(121): 130-139. DOI: 10.18287/2541-7525-201420-10-130-139.
  • Ivakhnik VV, Kapizov DR, Nikonov VI. Four-wave interaction in a multimode waveguide with a thermal nonlinear-ity in a circuit with codirectional pumping waves [In Russian]. Physics of Wave Processes and Radio Systems 2020; 23(3): 27-33. DOI: 10.18469/1810-3189.2020.23.3.27-33.
  • Vorobyeva EV, Ivakhnik VV, Kaurov AV. The spatial characteristics of a four-wave converter of radiation in multimode waveguide with resonant nonlinearity. Physics of Wave Processes and Radio Systems 2018; 21(1): 4-11.
  • Ivakhnik VV, Kapizov DR, Nikonov VI. Quality of wave-front reversal for four-wave interaction in a multimode waveguide with thermal nonlinearity. Computer Optics 2022; 46(1): 48-55. DOI: 10.18287/2412-6179-CO-1011.
  • Vinogradova MB, Rudinko OV, Sukhorukov AP. Theory of waves [In Russian]. Moscow: URSS Publisher; 2019. ISBN: 978-5-9710-6283-7.
  • Tikhonov EA, Shpak MT. Nonlinear optical phenomena in organic compounds [In Russian]. Kiev: "Naukova Dumka" Publisher; 1984.
  • Adams MJ. An introduction to optical waveguide. New York: John Wiley and Sons Ltd; 1981.
  • Slyusareva E, Gerasimova M, Plotnikov A, Sizykh A. Spectral study of fluorone dyes sorption on chitosan-based polyelectrolyte complexes. J Colloid Interface Sci 2014; 417: 80-87. DOI: 10.1016/j.jcis.2013.11.016.
  • Zel'dovich BY, Pilipetskii NF, Shkunov VV. Wavefront reversal [In Russian]. Moscow: "Nauka" Publisher; 1985.
Еще
Статья научная