Protective effect of virgin olive oil ( Olea europea L.) against oxidative damage induced by mercuric chloride in rat albinos Wistar

Автор: Necib Youcef, Bahi Ahlem, Zerizer Sakina, Abdennour Cherif, Boulakoud Mohamed Salah

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 1 т.10, 2014 года.

Бесплатный доступ

Olive oil is beneficial effects are not only related to its high content of oleic acid, but also to the antioxidant potential of its polyphenols. In this study, we assess the effects of virgin olive oil on mercuric chloride induced oxidative damage in the liver of rats. Adult male Albinos Wistar rats randomly divided into four groups, were the first was served as a control, whereas the remaining groups respectively treated with: virgin olive oil (2ml/ kg b.w; by gavage), mercuric chloride (0.5 mg/kg body weight i.p) and combination of virgin olive oil and HgCl 2. Change in liver enzyme activities, thiobarbituric acid reactive substances (TBARS) level, antioxidants and reduced glutathione (GSH) contents were determined after 2 weeks of experimental period. Exposure of rats to mercuric chloride caused a significant increase the lipid peroxidation level along with corresponding decrease in the reduced glutathione and various antioxidant enzymes in liver. And increase in serum: glucose level, APL and transaminases activities and decreased in total protein and albumin levels. Furthermore, treatment with mercuric chloride caused a marked elevation of liver weight and decreased body weight. Supplementation of virgin olive oil resulted in decreased of lipid peroxidation level and in the serum: AST, ALT and APL activities were decreased along with increase in total protein, albumin and liver GSH levels. The activities of antioxidants enzymes: glutathione peroxidase (GSH-Px) and glutathione –S-transferase (GST) were also concomitantly restored to near normal level by virgin olive oil supplementation to mercuric chloride intoxicated rats. Liver histological studies have confirmed the changes observed in biochemical parameters and proved the beneficial role of virgin olive oil. The results clearly demonstrate that virgin olive oil treatment augments the antioxidants defense mechanism in mercuric chloride induced toxicity and provides evidence that it may have a therapeutic role in free radical mediated diseases.

Еще

Antioxidant enzymes, virgin olive oil, mercury, oxidative stress, rat, liver

Короткий адрес: https://sciup.org/14323846

IDR: 14323846

Список литературы Protective effect of virgin olive oil ( Olea europea L.) against oxidative damage induced by mercuric chloride in rat albinos Wistar

  • Aguilera, C.M., Mesa, M.D., Ramirez-Tortosa, M.C., Nestares,M.T., Ros, E., Gil, A. (2004). Sunflower oil does not protect against LDL oxidation as virgin olive oil does in patients with peripheral vascular disease. Clin. Nutr. 23, 673-681
  • Aviram, M., Eias, K. (1993). Dietary olive oil reduces low-density lipoprotein uptake by macrophages and decreases the susceptibility of the lipoprotein to undergo lipid peroxidation. Ann. Nutr. Metab. 37, 75-84
  • Bando, I., Rens, M.I., Andres, D., Cascales, M. (2005). Endogenous antioxidant defence system in rat liver following mercuric chloride oral intoxication. J. Biochem. Mol. and Toxicol. 19(3), 154-161
  • Bonanome, A., Pagnan, A., Biffanti,S., Opportuno, A., Sorgato, F., Dorella, M., Maiorino, M., Ursini, F. (1992). Effect of dietary monounsaturated and polyunsaturated fatty acids on the susceptibility of plasma low density lipoproteins to oxidative modification. Arterioscler. Thromb. 12, 529-533
  • Boukhobza, M., Pichon, P. (1988). L’arganier, resource économique et médicinale pour le maroc, Phytotherapie, 27, 21-26
  • Buege, J.A., Aust, S.D. (1984). Microsomal lipid peroxidation, Methods. Enzymology. 105, 302-10
  • Bradford, M.A. (1976). Rapid and sensitive method for the quantities of microgram quantities of protein utilizing the principale of protein-dye binding. Anal. Biochemical. 72, 248-54
  • Cheng, J.P., Hu,W.X., Lin, X.J.M., Shi, w., Wang, W.H. (2006). Expression of C-fos and oxidative stress on brain of rats reared on food from mercury-selenium coexisting mining area. J. Envir. Scie. (china). 18(4), 788-792
  • Chung, A.S., Maines, M.D., Reynolds, W.A. (1982). Inhibition of the enzymes of glutathione metabolism by mercuric chloride in the rat kidney: reversal by selenium. Biochem. Pharmacol. 31, 3093-3100
  • Covas, M.I., Ruiz-Gutiérrez, V., De la Torre, R., Kafatos, A., Lamuela-Raventos, R. M., Osada JOwen, R. W., Visioli, F. (2006). Minor components of olive Oil: evidence to date of health benefits in humans. Nutr. Rev. 64(9), 20-30
  • Deiana, M., Aruoma, O.I., Bianchi, M.L.P., Spencer, J.P., Kaur, H., Halliwell, B., Aeschbach, R., Banni, S., Dessi, M.A., Corongiu, F.P. (1999). Inhibition of peroxynitrite dependent DNA basemodification and tyrosine nitration by the extra virgin olive oilderived antioxidant hydroxytyrosol. Free. Radic. Bio. Med. 26(5-6), 762-769
  • De La Cruz, Quintero, J.P., Auxiliadora Villalobos, L., M., Sánchez de la Cuesta, F. (2000). Lipid peroxidation and glutathione system in hyperlipemic rabbits: influence of olive oil administration. Biochim. Biophys. Acta. 1485, 36-44
  • De la Puerta, R., Ruiz Gutierrez, V., Hoult, J.R.S. (1999). Inhibition of leukocyte 5-lipoxygenase by phenolics from virgin olive oil. Biochem. Pharmacol. 57(4), 445-449
  • Esterbauer, H., Schaur, R.J., Zollner, H. (1991). Chemistry and biochemistry of of 4-hydroxynonenal, malondialdehyde and related aldehydes. Free. Radic. Biol. Med. 11, 81-88
  • Farima, M., Soares, F.A., Zeni, G., Souza, D.O., Rocha, J.B. (2004). Additive prooxidative effect of methylmercury and ebselen in liver from suckling rat pups. Toxicol. let. 146(3), 227-235
  • Feng, Y., Lu, Y.W., Xu, P.H., Long, Y., Wu, W.M., Li, W., Wang, R. (2008). Caffeic acid phenethyl ester and its related compounds limit the functional alterations of the isolated mousebrain and liver mitochondria submitted to in vitro anoxia-reoxygenation: relationship to their antioxidant activities. Biochim. Biophys. Acta. 1780(4), 659-672
  • Flohe, L., Gunzler, W.A. (1984). analysis of glutathione peroxidase, Methods. Enzymol. 105, 114-21
  • Garg, M.C., Chaudhary, D.P., Bansal, D.D. (2005). Effect of vitamin E supplementation on diabetes induced oxidative stress in experimental diabet in rats. India. J. Exp. Biol. 43, 177-180
  • Girardi, G., Elias, M.M. (1995). Mercury chloride effects on rat renal redox enzymes activities: SOD protection. Free. Rad. Biol. Med. 18(1), 61-66
  • Goya, L., Mateos, R., Bravo, L. (2007). Effect of the olive oil phenol hydroxytyrosol on human hepatoma HepG2 cells. Eur. J. Nutr. 46(2): 70-78
  • Gutteridge, J.M., Halliwell, B. (2000). Free radicals and antioxidants in the year 2000: a historical look to the future. Ann. Acad. Sci. 899, 136-147
  • Habig, W.H., Pabst Jakoby, W.B. (1974). Glutathione-S-transferase the first step in mercapturic acid formation. J. Biol. Chemical. 249, 7130-9
  • Hultberg, B., Andersson, A., Isaksson, A. (2001). Interaction of metals and thiols in cell damage and glutathione distribution: potentiation of mercury toxicity by dithiothreitol. Toxicol. 156, 93-100
  • Hussain, S., Atkinson, A., Thompson, S.J., Khan, A.T. (1999). Accumulation of mercury and its effect on antioxidant enzymes in brain, liver and kidneys of mice. J. Enviro. Scie. and Health, Part-B. 34(4), 645-660
  • Jadhav, S.H., Sarkar, S.N., Tripathi, H.C. (2006). Cytogenetic effects of a mixture of selected metals following subchronic exposure through drinking water in male rats. Ind. J. Exp. Biol. 44(12), 997-1005
  • Jadhav, S.H., Sarkar, S.N., Aggarwal, M., Tripathi, H.C. (2007). Induction of oxidative stress in erythrocytes of male rats subchronically exposed to a mixture of eight metals found as ground water contaminants in different parts of india, Arc. Environ. Contam. Toxicol. 52(1), 145-151
  • Kandaswami, C., Middleton, E (1994). Free radical scavenging and antioxidant activity of plant flavonoids. Adv. Exp. Med. Biol. 366, 351-376
  • Kasdallah-Grissa, A., Nakbi, A., Koubâa, N., El-Fazaâ, S., Gharbi, N., Kamoun, A. (2008). Hammami M: Dietary virgin olive oil protects against lipid peroxidation and improves antioxidant status in the liver of rats chronically exposed to ethanol. Nutr. Res. 28, 472-479
  • Ketterer, B. (1998). Glutathione-stransferase and prevention of cellular free radical damage. Free. Rad. Res. 28, 647-658
  • Keys, A. (1995). Mediterranean diet and public health: personal reflections. Am. J. Clin. Nutr. 61, 1321S-1323S
  • Kim, S.H., Sharma, R.P. (2005). Mercury alters endotoxin induced inflammatory cytokine expression in liver: differential role of P38 and extra cellular signal-regulated mitogen activated protein kinases. Immunopharmacol and Immunotoxicol. 27(1), 123-135
  • Kratz, M., Cullen, P., Kannenberg, F., Kassner, A., Fobker, M., Abuja, P.M., Assmann, G., Wahrburg, U. (2002). Effects of dietary fatty acids on the composition and oxidizability of low-density lipoprotein. Eur. J. Clin. Nutr. 56(1), 72-81
  • Kromidas, L., Trombetta, L.D., Jamall, I.S. (1990). The protective effects of glutathione against methylmercury cytotoxicity. Toxicol. Let. 51, 67-80
  • Kumar, M., Sharma, M.K., Kumar, A. (2005). Spirulina fusioformis: a food supplement against mercury induced hepatic injury. J. health. Scie. 51 (4), 424-430
  • Kyle, M.E., Miccadei, S., Nakae, D., Farber, J.L. (1987). Supeoxide dismutase and catalase protect cultured hepatocytes from the cytotoxicity of acetaminophen. Biochem. Bioph. Res. Co. 149(3), 889-896
  • Lavelli, V. (2002). Comparison of the antioxidant activities of extra virgin olive oils. J. Agric. Food. Chem. 50(26), 7704-7708
  • Massaro, M., De Caterina, R. (2002). Vasculoprotective effects of oleic acid: epidemiologicalbackground and direct vascular antiatherogenic properties. Nutr. Metab. Cardiovasc. Dis. 12(1), 42-51
  • Miller, O.M., Lund, B.O., Woods J.S. (1991). Reactivity of Hg (II) with superoxide: evidence for catalytic dismutation of superoxide by Hg (II). J. Biochem. Toxicol. 6, 293
  • Moreno, J.J., Mitjavilab, M.T. (2003). The degree of unsaturation of dietary fatty acids and the development of atherosclerosis (Review). J. Nutr. Biochem. 14(4), 182-195
  • Ochoa-Herrera, J.J., Huertas, J.R., Quiles, J.L., Mataix, J. (2001). Dietary oils high in oleic acid, but with different non-glyceride contents, have different effects on lipid profiles and peroxidation in rabbit hepatic mitochondria. J. Nutr. Biochem. 12(6), 357-364
  • Owen, R.W., Giacosa, A., Hull, W.E., Haubner, R., Wurtele, G., Spegelhalder, B., Bartsch, H. (2000). Olive-oil consumption and health: the possible role of antioxidant. Lancet. Oncol. 1, 107-112
  • Quig, D. (1998). Cysteine metabolism and metal toxicity. Alt. Medical. Rev. 3, 262-270
  • Rana, S.V.S., Singh, R., Verma, S. (1996). Protective effects of few antioxidants on liver function in rats treated with cadmium and mercury, Ind. J. Exp. Biol. 34, 177-179
  • Rice-Evans, C.A., Miller, N.J., Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free. Radic. Bio. Med. 20(7), 933-956
  • Risher-John, F., Amler-Sherlita, N. (2005). Mercury exposure: evaluation and intervention, the inappropriate use of chelating agents in diagnosis and treatment of putative mercury poisoning. Neurotoxicol. 26(4), 691-699
  • Salah, N., Miller, N.J., Paganga, G., Tijburg, L., Bolwell, G.P., Rice-Evans, C. (1995). Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch. Biochem. Biophys. 322(2), 339-346
  • Sharma, M.K., Kumar, M., Kumar, A. (2000). (study of mercury induced toxicity in liver and its modulation by spirulinafusiformis and ocimum sanctum). In: proceeding of third word congress on cellular and molecular biology held at jena, Germany. Cell. Mol. Biol. 46, 227
  • Sola, R., LaVille, A.E., Richard, J.L., Motta, C., Bargallo, M.T., Girona, J., Masana, L., Jacotot, B. (1997). Oleic acid rich diet protects against the oxidative modification of high density lipoprotein. Free. Radic. Biol. Med. 22(6), 1037-1045
  • Stacey, N.H., Kappus, H. (1982). Cellular toxicity and lipid peroxidation in response to mercury. Toxicol. App. Pharmacol. 63(1), 29-35
  • Stark, A.H., Mader, Z. (2002). Olive oil as a functional food: epidemiology and nutritional approaches. Nutr. Rev. 60(6), 170-176
  • Vandenberghe, J. (1995). Hepatotoxicology: mechanisms of liver toxicity and methodological aspects. In: Niesink JM, Vries JD, CRC press, Bocaroton, P.718
  • Velioglu, Y.S., Mazza, G., Gao, L., Oomah, B.D. (1998). Antioxidant activity and total phenolies in selected fruits,vegetables and grain products. J. Agr. Food. Chem. 46, 4113-4117
  • Visioli, F., Galli, C. (1998). The effect of minor constituents of olive oil on cardiovascular disease: new findings. Nutr. Rev. 56(5 Pt1), 142-147
  • Visioli, C., Galli, E., Plasmati, S., Viappiani, A., Hernandez, C., Colombo, A. (2000). Olive phenol hydroxytyrosol prevents passive smoking-induced oxidative stress. Circulation. 102, 2169-2171
  • Visioli, F., Galli, C. (2002). Biological properties of olive oil phytochemicals. Crit. Rev. Food. Sci. Nutr. 42(3), 209-221
  • Weckbercker, G., Cory, J.G. (1988). Ribonucleotide reductase activity and growth of glutathione-depended mouse leukaemia L 1210 cells in vitro, Cancer. Letters. 40, 257-264
  • Weinbrenner, T., Fito, M., de la Torre, R., Saez, G.T., P., Rijken, C., Tormos, S., Coolen, M.F., Albaladejo, S., Abanades, H., Schroder, J., Marrugat, M.I. (2004). Olive oils high in phenolic compounds modulate oxidative/antioxidative status in men. J. Nutr. 134(9), 2314-2321
  • WHO (1991). Environmental health criteria 118: inorganic mercury-environmental aspects. World healthorganization, geneva, Switzerland. P. 115-119
  • Wiseman, S.A., J.N., Mathot, N.J., de Fouw, L.B., Tijburg, (1996). Dietary non-tocopherol antioxidants present in extra virgin olive oil increase the resistance of low density lipoproteins to oxidation in rabbits. Atherosclerosis. 120(1-2), 15-23
Еще
Статья научная