Protective role of sodium selenite on mercuric chloride induced oxidative and renal stress in rats

Автор: Necib Youcef, Bahi Ahlem, Zerizer Sakina

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 2 т.9, 2013 года.

Бесплатный доступ

Backgroud: Reactive oxygen species are known to play a major role in mercuric chloride induced oxidative and renal stress. Sodium selenite as an exogenous source of selenium is used for endogenous selenoprotein synthesis to scavenge the free radicals. The study was designed to investigate the possible protective role of sodium selenite in mercuric chloride induced renal stress, by using biochemical approaches. Adult male Albinos Wistar rats were randomly divided into four groups. The first group was served as the control, the second group was given sodium selenite (0.25 mg/kg b.w), while the third group was given mercuric chloride (0.25 mg/kg), finally, the fourth group was given combined treatment of sodium selenite and mercuric chloride for 3weeks. Results: The effects of sodium selenite on mercuric chloride induced oxidative and renal stress were evaluated by serum creatinine, urea, uric acid, billirubin levels and LDH activity, kidney tissue lipid peroxidation, GSH levels, GSH-Px, GST and catalase activities and hematological parameters. Administration of mercuric chloride induced significant increase in serum: creatinine, urea, uric acid and billirubin concentration showing renal stress. Mercuric chloride also induced oxidative stress, as indicate by decreased kidney tissue of GSH level, GSH-Px, GST, and catalase activities along with increase the level of lipid peroxidation. Furthermore, treatment with mercuric chloride caused a marked elevation of kidney weight and decreased body weight and erythrocytes, hemoglobin, hematocrit levels. Sodium selenite treatment markedly reduced elevated serum: creatinine, urea, uric acid and billirubin levels, and LDH activity and conteracted the deterious effects of mercuric chloride on oxidative stress markers and hematological parameters and atteneuated histopathological changes caused by HgCl 2 in kidney. Conclusion: Our results indicate that sodium selenite could have a beneficial role against mercuric chloride induced nephrotoxicity and oxidative stress in rat.

Еще

Antioxidant enzymes, lipid peroxidation, mercury, renal stress, sodium selenite

Короткий адрес: https://sciup.org/14323733

IDR: 14323733

Список литературы Protective role of sodium selenite on mercuric chloride induced oxidative and renal stress in rats

  • Aebi, H. (1984) Catalase in vitro. In: Colowick, S. P., Kaplan, N.O. (Eds.), In: Methods in Enzymology, vol. 105. Academic press, New York, pp. 121-126.
  • Batra, Y., Acharya, S.K. (2003) Acute liver failure: prognostic markers. India. J. Gastroenterol. 22, 66-68.
  • Block, K., Birringer, M., Jiang, W.Q., Nakahodo, T., Thompson, H.J., Toscano, P.J., Uzar, H., Zhang, X., Zhu, Z.J. (2001) Allium chemistry: synthesis, natural occurrence, biological activity, and chemistry of Se-alk(en)ylselenocysteines and their gamma-glutamyl derivatives and oxidation products. J. Agric. Food chem. 49, 458-470.
  • Bradford, M.A. (1976) Rapid and sensitive method for the quantities of microgram quantities of protein utilizing the principale of protein-dye binding.Anal.biochem. 72, 248-54.
  • Brugnara, C. (2000) Reticulocyte cellular indices: a new approach in the diagnosis of anemias and monitoring of erythropoietic function. Crit. Rev. Clin. Lab. Sci. 37, 93-130.
  • Buege, J.A., Aust, S.D. (1984) Microsomal lipid peroxidation. Methods.enzymol. 105, 302-10.
  • Cabanero, A.I., Madrid, Y., C’amra, C. (2004) Selenium and mercury bioaccessibility in fish samples: on in vitro digestion method. Anal.Chim.Acta 526, 51-61.
  • Chandiene, J and Tappel, A.L. (1984) Interaction of gold(I)with the active site selenium-glutathione peroxidase. J. Inorg. Biochem. 20, 313-325.
  • Chen, C.Y., Qu, L.Y., Zhao, J.J., Lin, S.P., Deng, G.L., Li,B.,Zhang, P.Q., Chai, Z.F. (2006) Accumulation of mercury, selenium and their binding proteins in porcine kidney and liver from mercury-exposed areas with the investigation of their redox responses. Sci. Tot. Environ. 366, 627-637.
  • Cuvin-Aralar, M.L.A., Funess, R.W. (1991) Mercury and selenium interaction: a review. Ecotoxicol. Environ. Saf. 21, 348-364.
  • Diplock, A.T., Watkims, W.J., Heurson, M. (1986) Selenium and heavy metals. Ann. Clin. Res. 18, 55-60.
  • Duque, I., Garcia-Escribano, C., Rodriguez-Puyol, M., Diez-Marques, M.L. (1992) Effects of reactive oxygen species on cultured rat mesangial cells and isolated rat glomeruli.Am. J. Physiol. 263, F466-F473.
  • Flohe, L., Gunzler, W.A. (1984) analysis of glutathione peroxidase. Methods enzymol. 105, 114-21.
  • Fowler, B.A., Woods, J.S. (1977) Ultrastructural and Biochemical changes in renal mitochondria during chronic oral methylmercury exposure: the relationship to renal function. Exp.Mol.pathol. 27, 403-412.
  • Friberg, L., Enestron, S. (1991) Toxicology of inorganic mercury. In: Dayan, A.D., Hertel, R.F., Heseltine, E., Kazantzis, G., Smith, E.M., Van der venne, M.T. (Eds.), immunotoxicity of metals and immunotoxicitology. Plenum Press, New York, PP. 163-173.
  • Gailer, J., George, G.N., Pickering, I.J., Madden, S., Prince, R.C., Yu, E.Y., Denton, M.S., Aposhian, H.V. (2000) Structural basis of the autagonism between inorganic mercury and selenium in mammals. Chen. Res. Toxicol. 13, 1135-1142.
  • Girardi, G., Elias, M.M. (1995) Mercuric chloride effects on rat renal redox enzymes activities: SOD protection. Free radic. Biol. Med. 18, 61-66.
  • Goyer, R.A., Rhune, B.C. (1975) Toxic changes in mitochondrial membranes and mitochondrial function. In: Trump, B.F., Arstilla, A.U. (Eds.), Pathobiol. Cell Mem. Academic Press, New York.
  • Habig, W.H., Pabst, Jakoby, W.B. (1974) Glutathione-S-transferase the first step in mercapturic acid formation. J. Biol. Chem. 249, 7130-9.
  • Hoffman, D.J., Heinz, G.H. (1998) Effects of mercury and selenium on glutathione metabolism and oxidative stress in mallard ducks. Environ. Toxicol. Chem. 17, 161-166.
  • Hussain, S., Rodgers, D., Duhart, H.A., Ali, S.F. (1997) Mercuric chloride-induced reactive oxygen species and its effect on antioxidant enzymes in different regions of rat brain. J. Environ. Sci. Health 32B, 395-409.
  • Juresa, D., Blanusa, M., Kostil, K. (2005) Simultaneous administration of sodium selenite and mercuric chloride decrease efficacy of DMSA and DMPS in mercury elimination in rats. Toxicol.Lett. 155, 97-102.
  • Kaplan, L.A., Pesce, A.J. (1996) Clinical chemistry-theory. Analysis and correlation. Mosby-Year Book. PP. 609-610.
  • Karin, A.and Elias, A.S.J. (2003) Rapid induction of cell death by seleniul-compromised thioredoxinreductase I but not by the fully active enzyme containing selenocysteine. J. Biol. Chem. 278, 15966-15972.
  • Lund, B.O., Miller, D.M, Woods, J.S. (19991) Mercury-induced H2O2 production and lipid peroxidation in vitro in rat kidney mitochondria. Biochem.Pharmacol.42, S181-S187.
  • Lund, B.O., Miller, M.D., Woods, J.S. (1993) Studies on Hg (II)-induced H2O2 formation and oxidative stress in vivo and in vitro in rakidney mitochondria. Biochem.Pharmacol. 45, 2017-2024.
  • Magos, L., Clarkson, T.W., Spanow, S., Hudson, A.R. (1987) Comparison of the protection given by selenite, selenomethionine and biological selenium against the renotoxicity of mercury. Arch. Toxicol. 60, 422-426.
  • Paller, M.S. (1985) Free radical scavengers in mercuric chloride-induced acute renal failure in the rat. J. lab.Clin.Med. 105, 459-463.
  • Parizek, J., Ostadalova, I. (1967) The protective effect of small amounts of selenite in sublimate intoxication. Experientia 23, 142-143.
  • Perottoni, J., Lobato, L.P., Silveira, A., Rocha, J.B.T., Emanuelli, T. (2004a) effects of mercury and selenite on δ-aminolevulinatedehydratase activity and on selected oxidative stress parameters in rats. Environ. Res. 95, 166-173.
  • Perottoni, J., Rodrigues, O.E.D., Paixao, M.W., Zeni, G., Labato, L.P., Braga, A.L., Rocha, J.B.T., Emanuelli, T. (2004b) Renal and hepatic ALA-D activity and selected oxidative stress parameters of rats exposed to inorganic mercury and organoselenium compounds. Food Chem. Toxicol. 42, 17-28.
  • Pokorny, J. (1987) Major factors affecting auto-oxidation. In: Chan, H.W.(Ed.), Autooxidation of unsaturated lipids. Academic Press. London, PP. 141-207.
  • Sasakura, C., Suzuki, K.T. (1998) Biological interaction between transition metals (Ag, Cd and Hg), selenide/sulfide and selenoprotein P. J. Inorg.Biochem. 71, 159-162.
  • Schafer, F.Q. and Buetner, G.R. (2001) Redox state of the cell as viewed through the glutathione disulfide/glutathione couple. Free radical. Biol. Med. 30, 1191-1212.
  • Sener, G., Sehirli, O., Tozan, A., Velioglu-ovuç, A., Gedik, N., Omnrtag, G.Z. (2007) Gingobiloba extract protects against mercury (II)-induced oxidative tissue damage in rats. food chem. Toxicol. 45, 543-550.
  • Seppanen, K., Soininen, P., Salonen, J.T., Lotjonen, S., Laatikainen, R. (2004) Does mercury promote lipid peroxidation? An in vitro study concerning mercury, copper, and iron in peroxidation of low-densitylipoprotein. Biol. Trace Elem. Res. 101, 117-132.
  • Sheen, N. and Ajiyh, T.A. (2003) Prevention of nephrotoxicity induced by antioxidant drug cisplatin, using ganodermalucidum, a medicinal mushroom occurring in south india. Curr. Sci. 85, 478-482.
  • Sorg, O., Schilter, B., Howegger, P., Monnet-Tschudi, F. (1998) Increased vulnerability of neurons and glial cells to low concentrations of methylmercury in a prooxidant situation. Actaneuropathol. 96, 621-627.
  • Spallholz, J.E. (1994) On the nature of selenium toxicity and carcinostatic activity. Free Radic. Biol. Med. 17, 45-64.
  • Stacey, N.H., Kappus, H. (1982) Cellular Toxicity and lipid peroxidation in response to mercury.Toxicol.Appl.pharmacol. 63, 29-35.
  • Stohs, S.J., Bagchi, D. (1995) Oxidative mechanisms in the toxicity of metal-ions. Free Radic. Biol; Med. 18, 321-336.
  • Strubell, O., Kremer, J., Tilse, A., Keogh, J., Pentz, R. (1996) Comparative studies on the toxiciry of mercury, cadmium, and copper toward the isolated perfused rat liver. J. Toxicol. Enviro.Health. 47, 267-283.
  • Tsen, C.C, Tappel, A.L. (1958) Catalytic oxidation of glutathione and other sulfhydryl compounds by selenite. J. Biol. Chem. 233, 1230-1232.
  • Valko, M., Morris, H., Cronin, M.T. (2005) Metals, Toxicity and oxidative stress. Curr. Med. Chem. 12, 1161-1208.
  • Weckbercker, G., Cory, J.G. (1988) ribonucleotidereductase activity and growth of glutathione-depended mouse leukaemia L 1210 cells in vitro. Cancer let.40, 257-264.
  • WHO. (1991) Environmental health criteria 118: inorganic mercury-environmental aspects. World health organization, geneva, Switzerland, PP. 115-119.
  • Woods, J.S. (1989) Mechanism of metal-induced alterations of cellular heme metabolism.Comments Toxicol. 3, 3-25.
  • Woods, J.S., Calas, C.A., Aichre, L.D. (1990b) Stimulation of porphyrinogen oxidation by mercuric ion. Promotion of oxidation from the interaction of mercuric ion, glutathione, and mitochondria-generated hydrogen peroxide. Mol. Pharmacol. 38, 261-266.
  • Woods, J.S., Calas, C.A., Aichre, L.D., Robinson, B.H., Mailer, C. (1990a) Stimulation of porphyrinogen oxidation by mercuric ion.Evidence of Free radical formation in the presence of thiols and hydrogen peroxide. Mol. Pharmacol. 38, 253-260.
  • Xia, L., Nordman, T., Olsson, J.M., Damdimopoulos, A., Bjorkhembergman, L., Nalvarte, T., Eriksson, L.C., Armer, E.S.J, Spyron, G., Bjornstedt, M. (2003) The mammalian selenoenzyme thioredoxin reductase reduces ubiquinone. A novel mechanism for defense against oxidative stress. J. Biol. Chem. 278, 2141-2146.
  • Yee, S., Choi, B. (1994) Methylmercury poisoning induces oxidative stress in the mouse-brain. Exp. Mol. Pathol. 60, 188-196.
  • Yonaha, M.S.M, Sagai, M. (1983) Induction of lipid peroxidation in rats by mercuric chloride. Lif.Scie. 32, 1507-1514.
  • Yoneda, S., Suzuki, K.T. (1997) Detoxification of mercury by selenium by binding of equimolar Hg-Se complex to a specific plasma protein. Toxicol. Appl. Pharmacol. 143, 274-280.
  • Zalups, P.K. (2000) Molecular interactions with mercury in the kidney. Pharmacol. Rev. 52, 113-143.
  • Zolla, L., Lupid, G., Bellelli, A., Amiconi, G. (1997) Effect of mercuric ions on human erythrocytes.Relationships between hypotonic swelling and cell aggregation. Biochem. Biophys. Acta 1328, 273-280.
Еще
Статья научная