Pseudo-Boolean Polynomial Method for InterpreTab. Dimensionality Reduction: A Paradigm Shift from Abstract to Meaningful Feature Extraction

Автор: Chikake T.M., Goldengorin B.I., Pardalos P.M.

Журнал: Компьютерная оптика @computer-optics

Рубрика: International conference on machine vision

Статья в выпуске: 6 т.49, 2025 года.

Бесплатный доступ

We present a general-purpose, training-free framework for dimensionality reduction and clustering based on per–sample pseudo–Boolean polynomials (PBP). The method constructs compact, interpreTab. features without model fitting and is evaluated under a standardized protocol that compares PBP to PCA, t-SNE, and UMAP using identical inputs and metrics: clustering alignment (V-measure, Adjusted Rand Index), cluster geometry (Silhouette coefficient, Calinski–Harabasz index, Davies–Bouldin index), and supervised probes (linear separability and boundary complexity (1–NN error)). Across 11 diverse datasets spanning tabular, signal, and ecological domains, PBP leads on linear separability in 5/11 datasets and achieves lower boundary complexity in 2/11 datasets, while remaining competitive on clustering metrics. We report best-performing aggregation and sorting configurations per dataset and provide guidance on when PBP should be preferred for interpreTab. analysis and reproducible evaluation.

Еще

Dimensionality reduction, pseudo-Boolean polynomials, clustering, interpreTab. features, sample independence, feature selection

Короткий адрес: https://sciup.org/140313282

IDR: 140313282   |   DOI: 10.18287/COJ1815