Quantitative Evaluation of Rice (Oryza sativa L.) Under High Temperature Stress

Автор: Sadaf Ansari, Babita Patni, Gurdeep Bains

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 4 т.16, 2020 года.

Бесплатный доступ

Rice (Oryza sativa L.) is world’s second highest produced grain crop after maize. It is India’s preeminent staple crop among other cereal crops. It is a major source of food after wheat. However, it is highly sensitive towards high temperature during flowering and early grain filling stages hence, threaten crop productivity. The various anthropogenic activities increase the global temperature at an alarming rate which causes negative impact on agriculture in terms of reduction in growth and yield. With increasing population and changes in global climate, the current rice production will be inadequate to meet the future demand very soon. Therefore, use of temperature resistant variety can be a better alternative. The experiment was carried out with thirty two genotypes of rice to evaluate genotype for growth and yield attributing traits under high temperature conditions. The genotypes under investigation were observed at flowering and maturity stage after the treatment of high temperature. Among all the genotypes, IET 23947, Luit and IR-82310-B-B67-2 were found most tolerant to high temperature as they showed significant enhancement in grain yield (70.95%), 1000 grain weight (36.72%) and harvest index (43.58%). Therefore, these three potential genotypes can be exploited for further studies with respect to high temperature stress (heat stress) to obtain the best heat resistant rice genotype with high production and improvement of rice genotype for heat resistance.

Еще

Rice, Oryza sativa L., Variability, Heat stress

Короткий адрес: https://sciup.org/143173855

IDR: 143173855

Список литературы Quantitative Evaluation of Rice (Oryza sativa L.) Under High Temperature Stress

  • Carmo-Silva, A. E., Gore, M. A., Andrade-Sanchez, P., French, A. N., Hunsaker, D. J., & Salvucci, M. E. (2012). Decreased CO2 availability and inactivation of Rubisco limit photosynthesis in cotton plants under heat and drought stress in the field. Environmental and Experimental Botany, 83, 1-11.
  • Chakrabarti, B., Singh, S. D., Kumar, V., Harit, R. C., & Misra, S. (2013). Growth and yield response of wheat and chickpea crops under high temperature. Indian Journal of Plant Physiology, 18(1), 7-14.
  • FAOStat, F. (2010). Agriculture Organization. Rome, Italy: http://faostat. External. fao. org/. Accessed on 17th April.
  • Fujita, D., Trijatmiko, K. R., Tagle, A. G., Sapasap, M. V., Koide, Y., Sasaki, K., & Fukuta, Y. (2013). NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars. Proceedings of the National Academy of Sciences, 110(51), 20431-20436.
  • Gadakh, S. R. (2013). Physio-biochemical studies in sorghum under water stress. Thesis, Doctor of Philosophy. MPKV, University Library.
  • Han, F., Wang, W., Li, Y., Shen, G., Wan, M., & Wang, J. (2013). Changes of biomass, lipid content and fatty acids composition under a light–dark cyclic culture of Chlorella pyrenoidosa in response to different temperature. Bioresource technology, 132, 182-189.
  • Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14(5), 9643-9684.
  • Ishikawa, S., Ando, S., & Yoshikawa, S. (2014). Effects of Planting Sugarcane and Napier Grass on N Leaching from Lysimeters under High Application of Cattle Manure. American Journal of Experimental Agriculture, 4(5), 497.
  • Ishimaru, T., Horigane, A. K., Ida, M., Iwasawa, N., Sanoh, Y. A., Nakazono, M., & Yoshida, M. (2009). Formation of grain chalkiness and changes in water distribution in developing rice caryopses grown under high-temperature stress. Journal of Cereal Science, 50(2), 166-174.
  • Islam, M. T. (2011). Effect of temperature on photosynthesis, yield attributes and yields of aromatic rice genotypes. International Journal of Sustainable Crop Production, 6(1), 14-16.
  • Körner, C. (2012). Water, nutrient and carbon relations. In Alpine Treelines 151-168.
  • Springer Basel. Lavania, D., Dhingra, A., Siddiqui, M. H., Al-Whaibi, M. H., & Grover, A. (2015). Current status of the production of high temperature tolerant transgenic crops for cultivation in warmer climates. Plant Physiology and Biochemistry, 86, 100-108.
  • Li, H., Chen, Z., Hu, M., Wang, Z., Hua, H., Yin, C., & Zeng, H. (2011). Different effects of night versus day high temperature on rice quality and accumulation profiling of rice grain proteins during grain filling. Plant Cell Reports, 30(9), 1641-1659.
  • Matsui, T., Omasa, K., & Horie, T. (2001). The difference in sterility due to high temperatures during the flowering period among japonica-rice varieties. Plant Production Science, 4(2), 90-93.
  • Mohammed, A. R. & Tarpley, L. (2010). Effects of high night temperature and spikelet position on yield-related parameters of rice (Oryza sativa L.) plants. European Journal of Agronomy, 33(2), 117-123.
  • Morita, S., Hattori, T., Inanaga, S., Araki, H., An, P., Luxová, M., & Lux, A. (2005). Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiologia Plantarum, 123(4), 459-466.
  • Olesen, J. E., Trnka, M., Kersebaum, K. C., Skjelvåg, A. O., Seguin, B., Peltonen-Sainio, P., & Micale, F. (2011). Impacts and adaptation of European crop production systems to climate change. European Journal of Agronomy, 34(2), 96-112.
  • Parvin, K. (2016). Mitigation of salt stress in tomato by exogenous application of calcium. Thesis, Doctor of Philosophy. Umm Al Qura University, Makkah Al Mukaramah, K.S.A.
  • Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., & Friedlingstein, P. (2010). The impacts of climate change on water resources and agriculture in China. Nature, 467(7311), 43.
  • Prasad, P. V .V., Staggenborg, S. A., & Ristic, Z. (2008). Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. In: Response of crops to limited water: Understanding and modeling water stress effects on plant growth processes Volume 1 Eds: L.R. Ahuja, V.R. Reddy, S.A. Saseendran, Qiang Yu, p. 301-355.
  • Shah, N. H., & Paulsen, G. M. (2003). Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant and Soil, 257(1), 219-226.
  • Teixeira, E. I., Fischer, G., van Velthuizen, H., Walter, C., & Ewert, F. (2013). Global hot-spots of heat stress on agricultural crops due to climate change. Agricultural and Forest Meteorology 170, 206-215.
  • Tian, F., Li, B., Ji, B., Yang, J., Zhang, G., Chen, Y., & Luo, Y. (2009). Antioxidant and antimicrobial activities of consecutive extracts from Galla chinensis: The polarity affects the bioactivities. Food Chemistry, 113(1), 173-179.
  • Vijayalakshmi, K., & Sangeetha, I. (2011). Determination of bioactive components of ethyl acetate fraction of Punica granatum Rind extract Inl. Journal of Pharmacutical Science Drug Response, 3 (2), 116-122.
  • Yun-Ying, C. A. O., Hua, D., Li-Nian, Yang, Zhi-Qing, Wang, Shao-Chuan, Zhou, & Jian-Chang, Yang. (2008). Effect of heat stress during meiosis on grain yield of rice cultivars differing in heat tolerance and its physiological mechanism. Acta Agronomica Sinica, 34(12), 2134-2142.
Еще
Статья научная