Quantum software engineering and industry 4.0 as the platform for intelligent control of robotic sociotechnical systems in industry 5.0 / 6.0

Бесплатный доступ

The fundamentals of the construction and development of the fifth and sixth industrial revolutions (I5.0 / I6.0) are considered as the development of the results of the Industry 4.0 (I4.0) project applying models of intelligent cognitive robotics, quantum software engineering, quantum intelligent control and friendly ship interfaces such as "brain - computer", "human-robot". The issues of constructing physical laws of intelligent control of robotic sociotechnical systems based on the laws of information and thermodynamic distribution of criteria for stability, controllability and robustness are discussed. The extracted quantum information makes it possible to form an additional "social" thermodynamic control force hidden in the information exchange between agents of a multicomponent sociotechnical system.

Еще

Quantum software engineering, industry 5.0 / 6.0, robotic sociotechnical systems, quantum intelligent regulators

Короткий адрес: https://sciup.org/14131646

IDR: 14131646

Список литературы Quantum software engineering and industry 4.0 as the platform for intelligent control of robotic sociotechnical systems in industry 5.0 / 6.0

  • Smart Factory of Industry 4.0: Key Technologies, Application Case, and Challenges / B. Chen [et al.] // IEEE Access. – 2018. – No 6. – Pp. 6505 – 6519. – DOI: 10.1109/ACCESS.2017.2783682.
  • IEEE Intellectual Property Rights // IEEE - The world's largest technical professional organization. –IEEE, 2024. – URL: http://www.ieee.org/publications_standards/publications/rights/index.html.
  • Digital twin and virtual reality: a co-simulation environment for design and assessment of industrial workstations/ V. Havard, B. Jeanne, M. Lacomblez, D. Baudry // Production & Manufacturing Research – 2019. – Vol. 7. – No 1. – Pp. 472–489. – DOI: 10.1080/21693277.2019.1660283
  • A Survey on AI-Driven Digital Twins in Industry 4.0: Smart Manufacturing and Advanced Robotics / Z. Huang [et al.] // Sensors. – 2021. – Vol. 21. – No 19. – Article 6340. – DOI: https://doi.org/10.3390/s21196340.
  • Tyatyushkina O., Ulyanov S. Intelligent cognitive control of robotic sociotechnical systems. Pt.1: Ro-botic systems and «Human being - robot» interactive models in project «Industry 4.0» // System Analy-sis in Science and Education. – 2021. – No 3. – Pp. 44–101(In Russ). – URL: http://sanse.ru/download/447.
  • Ulyanov S. V. Intelligent cognitive control of sociotechnical robotic systems. Pt. 2: Nonlinear model generation of intelligent cognitive robotics for project “Industry 4.0” // System Analysis in Science and Education. – 2021. – No 3. – Pp. 1–43(In Russ). URL: http://sanse.ru/download/449.
  • Alcácer V., Cruz-Machado V. Scanning the Industry 4.0: A Literature Review on Technologies for Manufacturing Systems // Intern. J. Eng. Sci. and Technol. – 2019. – Vol. 22. – Pp.899 – 919. – DOI: https://doi.org/10.1016/j.jestch.2019.01.006.
  • Pegman G. Leading European Robotics: Robotic Visions to 2020 and beyond – The Strategic Research Agenda for robotics in Europe. Industrial Technologies Conference Brussels, Belgium, 2020.
  • Intelligent Cognitive Robotics / A. G. Reshetnikov, S. V. Ulyanov, D. P. Zrelova, P. V. Zrelov. – M.: Kurs, 2023. – 464 p.
  • A Methodology for Flexible Implementation of Collaborative Robots in Smart Manufacturing Systems / H. Giberti [et al.] // Robotics. – 2022. –Vol. 11. – No 9. – DOI: https://doi.org/10.3390/ robot-ics11010009.
  • Intelligent cognitive robotics. Vol. 1: Soft computational intelligence and information-thermodynamic law of intelligent cognitive control / O. Tyatyushkina, A. Reshetnikov, V. Ulyanov [et al.]. – M.: Kurs, 2022. – 528 p.
  • Marinho M. M., Quiroz-Omaña J. J., Harada K. Design and Validation of a Multi-Arm Robot Platform for Scientific Exploration // arXive.org e-Print archive. – arXiv:2210.11877v1 [cs.RO] 21 Oct 2022.
  • Kaigom E.G. Potentials of the Metaverse for Robotized Applications in Industry 4.0 and Industry 5.0 // arXive.org e-Print archive. – arXiv:2404.00783v1 [cs.RO] 31 Mar 2024.
  • Интеллектуальная когнитивная робототехника. Ч. 1: Технологии квантовых когнитивных вычислений / В. В. Кореньков, С. В. Ульянов, А. А. Шевченко, А. В. Шевченко. – Москва: КУРС, 2022. – 557 с.
  • Ulyanov S.V. Intelligent cognitive robotics. Vol. 2. – M.: Kurs, 2022.
  • Quantum soft engineering toolkit. Pt I. / Ivancova O.V., Korenkov V.V., Ulyanov S.V., Zrelov P.V. – M.: Kurs, 2022.
  • Tyatyushkina O.Yu., Ulyanov S.V. Unmanned Aerial Robotic Vehicles. Pt. 2: Unconventional models of unmanned aerial systems and aerial embedding manipulators // System analysis in science and educa-tion. – 2022. – No 3. – Pp. 53-109/ – URL: http: //sanse.ru/download/474.
  • All the Feels: A dexterous hand with large area sensing / R. Bhirangi [et al.] // arXive.org e-Print ar-chive. – arXiv:2210.15658v1 [cs.RO] 27 Oct 2022.
  • Berscheid L., Friedrich C., Kröger T. Robot Learning of 6DoF Grasping using Model-based Adaptive Primitives // arXive.org e-Print archive. – arXiv:2103.12810v1 [cs.RO] 23 Mar 2021.
  • Robot Cooking with Stir-fry: Bimanual Non-prehensile Manipulation of Semi-fluid Objects / J. Liu [et al.] // arXive.org e-Print archive. – arXiv:2205.05960v1 [cs.RO] 12 May 2022.
  • SAM-RL: Sensing-Aware Model-Based Reinforcement Learning via Differentiable Physics-Based Simulation and Rendering / Jun Lv [et al.] // arXive.org e-Print archive. – arXiv:2210.15185v1 [cs.RO] 27 Oct 2022.
  • Robust Control of a New Asymmetric Teleoperation Robot Based on a State Observer / B. Shi, H. Wu, Y. Zhu, M. Shang, // Sensors. – 2021. – Vol. 21. – Pp. 6197. –DOI: https://doi.org/10.3390/s21186197.
  • Caveats on the first-generation da Vinci Research Kit: latent technical constraints and essential calibra-tions / Z. Cui, J. Cartucho, S. Giannarou, F. R. y Baena // arXive.org e-Print archive. – arXiv:2210.13598v1 [cs.RO] 24 Oct 2022.
  • Kasaei H., Kasaei M. Throwing Objects into A Moving Basket While Avoiding Obstacles // arXive.org e-Print archive. – arXiv:2210.00609v1 [cs.RO] 2 Oct 2022.
  • A Mixed-Reality Tele-Operation Method for High-Level Control of a Legged-Manipulator Robot / C. Cruz Ulloa, D. Domínguez, J. Del Cerro, A. Barrientos // Sensors. – 2022. – Vol. 22. – No 21. – Pp. 8146. – DOI: https://doi.org/10.3390/s22218146.
  • Towards Semantic Integration of Machine Vision Systems to Aid Manufacturing Event Understanding / K. Xia [et al.] // Sensors. – 2021. – Vol. 21. – No 13. – Pp. 4276. – DOI: https://doi.org/10.3390/s21134276.
  • Multimodal Human-Robot Interface for Accessible Remote Robotic Interventions in Hazardous Envi-ronments / G. Lunghi [et al.] // IEEE Access. – 2019. – Vol. 7. – Pp. 127290 – 127319. – DOI: https://doi.org/10.1109/ACCESS.2019.293949.
  • Sheridan T. B. Human–Robot Interaction: Status and Challenges // Human factors. – 2016. – Vol. 58. – No. 4. – Pp. 525 –532. – DOI: 10.1177/0018720816644364
  • MiniCERNBot Educational Platform: Antimatter Factory Mock-up Missions for Problem-Solving STEM Learning / M. Garcés [et al.] // Sensors. – 2021. – Vol. 21. – Pp. 1398. – DOI: https://doi.org/10.3390/s21041398
  • Tyatyushkina O.Yu., Ulyanov S.V. Unmanned Aerial Vehicles. Pt. 1: Bio-inspired and aerial–aquatic locomotion // System analysis in science and education. – 2022. – No 3. – Pp. 8-52. – URL: http://sanse.ru/download/473.
  • Tyatyushkina O.Yu., Ulyanov S.V. Unmanned Aerial Robotic Vehicles. Pt. 2: Unconventional models of unmanned aerial systems and aerial embedding manipulators // System analysis in science and educa-tion. – 2022. – No 3. – Pp. 53-109. – URL: http: //sanse.ru/download/474.
  • Mohiuddin A. et al. A survey of single and multi-UAV aerial manipulation // Unmanned Systems. – 2020. – Vol. 8. – No 2. – Pp. 119-147. – DOI: https://doi.org/10.1142/S2301385020500089.
  • Past, Present and Future of Aerial Robotic Manipulators / A. Ollero [et al.] // IEEE TRANSACTIONS ON ROBOTICS. – 2022. – Vol. 38. – No. 1. – Pp. 626-645. – [Preprint version final version at http://ieeexplore.ieee.org/, 2021.]
  • Sanalitro D. Aerial Cooperative Manipulation: full pose manipulation in air and in interaction with the environment. – DOCTORAT DE L’UNIVERSITÉ FÉDÉRALE TOULOUSE MIDI-PYRÉNÉES. l’Institut National des Sciences Appliquées de Toulouse (INSA de Toulouse), 2022.
  • Huan N., Kostas A. Forceful Aerial Manipulation based on an Aerial Robotic Chain: Hybrid Modeling and Control // IEEE Robotics and Automation Letters. – 2021. – Vol. 6. – No 2. – Pp. 3711-3719. – DOI: 10.1109/LRA.2021.3064254.
  • Zhao M., Anzai T., Nishio T. Design, Modeling and Control of a Quadruped Robot SPIDAR: Spherical-ly Vectorable and Distributed Rotors Assisted Air-Ground Amphibious Quadruped Robot // arXive.org e-Print archive. – arXiv:2301.04050v1 [cs.RO] 10 Jan 2023
  • The current state and future outlook of rescue robotics / Delmerico J. et al. // Journal of Field Robotics. – 2019. –Pp. 1–21. – DOI: 10.1002/rob.21887.
  • A survey of quantum computing hybrid applications with brain-computer interface / D. Huang, M. Wang, J. Wang, J. Yan // Cognitive Robotics. – 2022. – Vol. 2. – Pp. 164–176. – DOI: https://doi.org/10.1016/j.cogr.2022.07.002.
  • Hybrid EEG-EMG based brain computer interface (BCI) system for real-time robotic arm control / S. Abdullah, M. A. Khan, M. Serpelloni, E. Sardini // Advanced Materials Letters. – 2019. – Vol. 10. – No 1. – Pp. 35-40. – DOI: 10.5185/amlett.2019.2171.
  • Duarte R. M. Low cost Brain Computer Interface system for AR Drone Control. – PhD Thesis. UNI-VERSIDADE FEDERAL DE SANTA CATARINA CENTRO TECNOLÓGICO PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA DE AUTOMAÇÃO E SISTEMAS, 2017.
  • van Erp T., Gladysz B. Quantum Technologies in Manufacturing Systems: Perspectives for Application and Sustainable Development // Procedia CIRP. – 2022. – Vol. 107. – Pp.1120–1125. – DOI: https://doi.org/10.1016/j.procir.2022.05.118.
  • Artificial Intelligence and Machine Learning for Quantum Technologies / M. Krenn, J. Landgraf, T. Foesel, F. Marquardt // arXive.org e-Print archive. – arXiv:2208.03836v1 [quant-ph] 7 Aug 2022.
  • Industry quantum computing applications / A. Bayerstadler [et al.] // EPJ Quantum Technology. – 2021. – Vol. 8. – Article number: 25 (2021). – DOI: https://doi.org/10.1140/epjqt/s40507-021-00114-x.
  • Quantum Communication Systems: Vision, Protocols, Applications, and Challenges /Syed Rakib Ha-san, Mostafa Zaman Chowdhury, Md. Saiam, Yeong Min Jang // arXive.org e-Print archive. – arXiv: 2212.13333v1 [quant-ph] 29 Dec 2022.
  • Quantum Machine Learning for 6G Communication Networks: State-of-the-Art and Vision for the Future / S. J. Nawaz [et al.] // IEEE Access. – Vol.7. – Pp. 46317-46350. – DOI: 10.1109/ACCESS.2019.2909490.
Еще
Статья научная