Quantum supremacy in end-to-end intelligent IT. Pt. III. Quantum software engineering - quantum approximate optimization algorithm on small quantum processors
Автор: Ivancova Olga, Korenkov Vladimir, Tyatyushkina Olga, Ulyanov Sergey, Fukuda Toshio
Журнал: Сетевое научное издание «Системный анализ в науке и образовании» @journal-sanse
Статья в выпуске: 2, 2020 года.
Бесплатный доступ
Principles and methodologies of quantum algorithmic gate-based design on small quantum computer described. The possibilities of quantum algorithmic gates simulation on classical computers discussed. A new approach to a circuit implementation design of quantum algorithm gates for fast quantum massive parallel computing presented. SW & HW support sophisticated smart toolkit of supercomputing accelerator of quantum algorithm simulation on small quantum programmable computer algorithm gate (that can program in SW to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates) described.
Quantum algorithm, small quantum computer, quantum computation intelligence, quantum programming
Короткий адрес: https://sciup.org/14123311
IDR: 14123311
Список литературы Quantum supremacy in end-to-end intelligent IT. Pt. III. Quantum software engineering - quantum approximate optimization algorithm on small quantum processors
- Aram W. Harrow Small quantum computers and large classical data sets // arXiv:2004.00026v1 [quant-ph] 31 Mar 2020.
- F. Barratt et al. Parallel Quantum Simulation of Large Systems on Small NISQ Computers // 2003.12087v1 [quant-ph] 26 Mar 2020.
- Van den Brink R. F.M. Vision on Next Level Quantum Software Tooling // Proc. The 10th Intern. Conf. Computational Logics, Programming, Tools, and Benchmarking. 2019. — Venice, May 5-9, Italy. — Pp. 16-23.
- Hadfield S.T. Quantum Algorithms for Scientific Computing and Approximate Optimization. - Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences. - COLUMBIA UNIVERSITY. — 2018.
- LaRose R. Overview and Comparison of Gate Level Quantum Software Platforms // arXiv:1807.02500v1 [quant-ph] 6 Jul 2018.
- Khatri S. Quantum-assisted quantum compiling // aXiv:1807.00800v5 [quant-ph] 7 May 2019.
- Leo Zhou, Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Device // arXiv:1812.01041v2 [quant-ph] 2019]; The “parameter shift rule” in the larger context of hybrid optimization.
- Schuld M. Evaluating analytic gradients on quantum hardware // arXiv:1811.11184v1 [quant-ph] 27 Nov 2018.
- Leo Zhou, Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Device // arXiv:1812.01041v2 [quant-ph] 2019.
- Schuld M. Evaluating analytic gradients on quantum hardware // arXiv:1811.11184v1 [quant-ph] 27 Nov 2018.
- Bergholm V. PennyLane: Automatic differentiation of hybrid quantum-classical computations // arXiv: 1811.04968v3 [quant-ph] 14 Feb 2020.
- Gilyén A., Arunachalam S., Wiebe N. Optimizing quantum optimization algorithms via faster quantum gradient computation // In book: Proc. of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms. – Springer Verlag. — 2019. — Pp.1425-1444. — [arXiv:1711.00465v3 [quant-ph] 17 Apr 2018].
- Gilyén A. Quantum singular value transformation & its algorithmic applications. — Institute for Logic, Language and Computation Universiteit van Amsterdam. ILLC Dissertation Series DS-2019-03. — 2019.
- Cornelissen A.J. Quantum gradient estimation and its application to quantum reinforcement learning. — Master thesis. Delft University of Technology. — 2018.
- Masaya Watabe, Quantum Circuit Parameters Learning with Gradient Descent Using Backpropagation // [quant-ph] 1910.14266. October, 2019.
- Harrow A.W. Small quantum computers and large classical data sets // arXiv:2004.00026v1 [quant-ph] 31 Mar 2020.
- Michailidis A. et al. Slow quantum thermalization and many-body revivals from mixed phase space // 1905.08564et al. v2 [quant-ph] 21 Jan 2020.