Расчёт помех в цепях бортовой аппаратуры космических аппаратов, вызванных электростатическими разрядами

Автор: Костин Алексей Владимирович, Пиганов Михаил Николаевич

Журнал: Известия Самарского научного центра Российской академии наук @izvestiya-ssc

Рубрика: Технологии в авиационном и ракетно-космическом комплексе

Статья в выпуске: 4-5 т.14, 2012 года.

Бесплатный доступ

В статье приводится способ расчёта помех в цепях бортовой аппаратуры космических аппаратов, вызванных электростатическими разрядами. Приводится пример расчёта. Обсуждаются результаты.

Электростатический разряд, поле, бортовая аппаратура, космический аппарат, излучатель, экран

Короткий адрес: https://sciup.org/148201402

IDR: 148201402

Текст научной статьи Расчёт помех в цепях бортовой аппаратуры космических аппаратов, вызванных электростатическими разрядами

и было экспериментально показано, что на КА действительно возникают электростатические заряды с разностью потенциалов до 20 кВ. Из анализа имеющихся в литературе данных следует, что космические аппараты заряжаются статическим электричеством практически на всей траектории полета.

Для защиты бортовой аппаратуры (БА) КА применяется ряд мер. Но вопрос о необходимости и достаточности принятых мер по защите от электростатических разрядов (ЭСР) остаётся открытым на этапе проектирования БА, и подтвердить правильность выбранных конструктивных решений можно только при натурных испытаниях системы. Если на этом этапе будет получен отрицательный результат, то возникнет необходимость доработки БА. Такие доработки вызывают дополнительные затраты и могут даже задержать сдачу изделия. Другое дело, если меры, принятые для защиты от ЭСР, избыточные. Это ведёт к удорожанию приборов, увеличению их массы и габаритов.

В настоящей статье рассматривается способ оценки уровня помех, наводимых в цепях БА КА под действием ЭСР вблизи корпуса. Рассмотрим источник помех, то есть ЭСР. Сила тока разрядного импульса имеет вид [2]

iP(t) = I . (e p t - e p 2 t )

где t – время; I , p 1 , p 2 можно найти по известным значениям амплитуды импульса, длительности импульса по уровню 0,5 и длительностью фронта по уровням 0,1…0,9. На рис. 1, как пример, представлена временная диаграмма импульса разрядной силы тока при минимальном значении длительности фронта импульса, минимальном значении переднего фронта и максимальной амплитуде 100 А.

Time

Рис. 1. Временная диаграмма импульса разрядной силы тока

ЭСР можно представить в виде элементарного электрического излучателя (диполя Герца). Поскольку размеры КА соизмеримы с длинами волны спектра излучаемого ЭСР [2], то можно сказать, что приёмник помех (то есть БА) будет расположена в ближней зоне диполя Герца. Запишем выражения для напряжённостей электрического и магнитного полей в ближней зоне диполя Герца [3]:

LQco^lsin^O^

H ^ —----------;

47rr2

.   Hja^lcos^')

JWSqZ^T

.     tp(ja))lsin(6)

6     }WE04nr3 '

где to - угловая частота, I( j®) - спектральная плотность импульса разрядного тока, ε 0 – электрическая постоянная, l – длина вибратора, r, θ, φ – координаты сферической системы (см. рис. 2). Если подвергнуть выражение для составляющей магнитного поля обратному преобразованию Фурье, то можно увидеть, что форма импульса не поменялась, осталась такой же, что и в (1), а изменился лишь коэффициент перед выражением.

Теперь рассмотрим пример расчёта помехи. Пусть имеется токовый контур, расположенный на расстоянии R от дуги ЭСР. Контур имеет размеры a и b (см. рис. 2). На практике токовыми контурами могут являться контуры, образованные источниками сигналов, нагрузкой, сигнальным и общим проводом. Именно эти цепи являются приёмниками помех. Поскольку в реальной аппаратуре монтаж, как правило, лежит в плоскости, то предположим, что рассматриваемый контур тоже лежит в одной плоскости. В той же плоскости лежит дуга ЭСР. Ориентация, представленная на рис. 2, является самым худшим вариантом, т. к. составляющая магнитного поля нормальна плоскости контура. Найдём ЭДС помехи, наводимую в этом контуре при ЭСР.

Рис. 2. Диполь Герца в декартовой и сферической системе координат и ориентация токового контура

ЭДС, наводимая в токовом контуре, может быть определена по закону Фарадея [3]

e(t) =- d B (t)dS =- µ d H (t)d S dtS                0 dtS           ,      (4)

где μ 0 – магнитная постоянная, – магнитная индукция. Выражение (4) справедливо для воздуха и вакуума. Раскроем интеграл по поверхности S в декартовой системе координат [4]:

e(t) =

P- 0 ' ^ 4 n

a/ 2 R + b

- a/ 2 R

y

( y 2 + z 2)

dydz I (p}e'P - p2ep 2 t ).

Определим l по кривой Пашена [5], представленной на рис. 3. Напряжение ЭСР может достигать 20 кВ. По кривой Пашена определяем максимальный промежуток, при котором может произойти разряд при разности потенциалов 20 кВ. Найденное значение и будет являться l . В нормальных условиях атмосферное давление составляет от 630 до 800 мм рт. ст. При меньшем давлении значение l будет больше. При давлении 630 мм рт. ст. l =0,63 см.

Рис. 3. Кривая Пашена для воздуха

Форма импульса наведённой ЭДС представлена на рис. 4. Поскольку ЭДС пропорциональна скорости изменения магнитного потока, а значит и тока, самый большой выброс получается во время фронта. Если провести расчёт для контура на расстоянии R=50 мм с размерами сторон a и b от 10 до 100 мм с шагом 10 мм при воздействии импульса длительностью 1 мкс по уровню 0,5, длительностью фронта 1 нс по уровню 0,1-0,9, то получим значения ЭДС, приведённые в таблицах 1 и 2. При этом длительность t1 будет равна 3,36 нс.

Рис. 4. Форма импульса ЭДС, наводимой в контуре

Таблица 1. Амплитуда А 1 для импульса с длительностью 1 мкс по уровню 0,5 и длительностью переднего фронта 1 нс по уровню 0,1-0,9

”\a, cm

b, cm

1

2

3

4

5

6

7

8

9

10

1

4.601

9.088

13.363

17.349

20.997

24.286

27.217

29.805

32.078

34.064

2

7.891

15.61

23.006

29.958

36.384

42.244

47.527

52.251

56.449

60.164

3

10.36

20.517

30.285

39.52

48.118

56.022

63.213

69.704

75.527

80.729

4

12.282

24.34

35.972

47.014

57.349

66.909

75.667

83.628

90.826

97.306

5

13.82

27.403

40.535

53.041

64.794

75.718

85.778

94.978

103.345

110.925

6

15.078

29.911

44.277

57.991

70.922

82.985

94.143

104.394

113.764

122.296

7

16.127

32.004

47.4

62.129

76.052

89.081

101.174

112.326

122.562

131.922

8

17.015

33.775

50.047

65.638

80.407

94.264

107.162

119.095

130.084

140.169

9

17.776

35.294

52.317

68.651

84.151

98.724

112.321

124.935

136.585

147.309

10

18.436

36.611

54.287

71.266

87.403

102.601

116.812

130.025

142.257

153.548

Таблица 2 . Амплитуда А 2 для импульса с длительностью 1 мкс по уровню 0,5 и длительностью переднего фронта 1 нс по уровню 0,1-0,9

Ха, см

1

2

21

4

5

6

7

8

9

10

1

-1.364'10-3

-2.695'10-3

-3.962'10-3

-5.144'10-3

-6.226'10-3

-7.201'10-3

-8.07'10-3

-8.837'10-3

-9.511'10-3

-0.01

2

-2.34'10-3

-4.628'10-3

-6.821'10-3

-8.882'10-3

-0.011

-0.013

-0.014

-0.015

-0.017

-0.018

3

-3.072'10-3

-6.083'10-3

-8.98'10-3

-0.012

-0.014

-0.017

-0.019

-0.021

-0.022

-0.024

4

-3.642'10-3

-7.217'10-3

-0.011

-0.014

-0.017

-0.02

-0.022

-0.025

-0.027

-0.029

5

-4.098'10-3

-8.125'10-3

-0.012

-0.016

-0.019

-0.022

-0.025

-0.028

-0.031

-0.033

6

-4.471'10-3

-8.869'10-3

-0.013

-0.017

-0.021

-0.025

-0.028

-0.031

-0.034

-0.036

7

-4.782'10-3

-9.489'10-3

-0.014

-0.018

-0.0221

-0.026

-0.021

-0.033

-0.036

-0.039

8

-5.045'10-3

-0.01

-0.015

-0.019

-0.024

-0.028

-0.032

-0.035

-0.039

-0.042

9

-5.271'10-3

-0.01

-0.016

-0.02

-0.025

-0.029

-0.033

-0.037

-0.04

-0.044

10

-5.466'10-3

-0.011

-0.016

-0.021

-0.026

-0.03

-0.035

-0.039

-0.042

-0.046

Как видно из табл. 1 и 2 амплитуды импульсов могут достигать существенной величины. При увеличении длительности фронта значение А 1 уменьшается, а t 1 увеличивается. Это связано с уменьшением скорости и увеличением времени нарастания импульса тока ЭСР. Однако, корпуса БА КА, которые, как правило, изготавливаются из электропроводящего материала и ослабляют электромагнитное поле.

Как показывают расчёты [6] эффективность экранирования в некоторых диапазонах может достигать свыше 40 дБ. На амплитуду и форму импульсов ЭДС могут влиять не только корпуса БА. Поэтому, при определении помех от ЭСР предложенным в настоящей статье способом необходимо помнить, что контуры имеют собственное комплексное сопротивление (активное и реактивное). Реальную форму импульса необходимо определять с учётом этого комплексного сопротивления. Для определения комплексного сопротивления необходимо рассматривать конкретные случаи, конструкцию конкретной БА. Влияние комплексного сопротивления может привести к кардинальным изме- нениям не только амплитуд но и формы импульса вплоть до превращения его в колебательный процесс.

Список литературы Расчёт помех в цепях бортовой аппаратуры космических аппаратов, вызванных электростатическими разрядами

  • Manoranjan, R. J. Aeronaut. Soc.India. 1976. 28, №4. P. 431-434.
  • Соколов, А.Б. Обеспечение стойкости бортовой радиоэлектронной аппаратуры космических аппаратов к воздействию электростатических разрядов/А.Б. Соколов. Диссертации на соискание уч. степ. докт. техн. наук. -М.: МИЭМ, 2009. 51 с.
  • Макаров, Г.Т. Электродинамика и распространение радиоволн/Г.Т. Макаров, Б.М. Петров, Г.П. Грудинская. -М.: Сов. радио, 1969. 376 с.
  • Бронштейн, И.Н. Справочник по математике для инженеров и учащихся втузов/И.Н. Бронштейн, К.А. Семендяев. -М.: Наука, Гл. ред. физ.-мат. лит., 1986. 544 с.
  • Техника высоких напряжений: Курс лекций для бакалавров направления 140200 «Электроэнергетика» -Томск: ТПУ, 2005. 128 с.
  • Полонский, Н.Б. Конструирование электромагнитных экранов для радиоэлектронной аппаратуры/Н.Б. Полонский. -М.: Сов. радио, 1979. 216 с.
Статья научная