Extension of functional opportunity NMR analyzer AMV-1006M

Автор: Agafonov Oleg Sergeyevich, Prudnikov S.M.

Журнал: Научное приборостроение @nauchnoe-priborostroenie

Рубрика: Работы с конференции

Статья в выпуске: 3 т.28, 2018 года.

Бесплатный доступ

The article is devoted to the improvement of the complex system for the determination of oilseed quality indicators, using the nuclear magnetic resonance method for the example of sunflower seeds. The improvement consists in the development of an instrumental non-destructive express method of simultaneously determining the three main indicators of the quality of sunflower seeds: the mass fraction of oleic acid in the oil of sunflower seeds, the mass fraction of oil and moisture. In addition, the results of a study on the development of a set of standard samples allowing the reproduction of the envelope signals of the spin echo of sunflower seed oil protons with different contents of oleic acid, used for calibrating quantitative MRM-analyzers, are conducted. As substances of simulators magnetic resonance of relaxation characteristics of oil protons with different mass fraction of oleic acid, it is proposed to use organosilicon fluids with spin-spin relaxation times of protons in the ranges from 150 to 160 ms and from 180 to 200 ms, respectively. This allowed the development of standard samples of the mass fraction of oleic acid in the range from 30 to 90 % for quantitative magnetic resonance method analyzers, characterized by high long-term stability of the physic-chemical parameters, and, consequently, by considerably higher stability of the metrological values attained. Developed standards, samples are less susceptible to temperature, greatly simplify the process of grading quantitative samples. At the end of the article, the metrological characteristics of the modernized quantitative magnetic resonance method analyzer are presented.

Еще

Nuclear magnetic resonance, express method, imitation samples, sunflower seeds, mass fraction, oleic acid

Короткий адрес: https://sciup.org/142214868

IDR: 142214868   |   DOI: 10.18358/np-28-3-i2935

Статья научная