Растительная клеточная стенка в симбиотических взаимодействиях. Пектины

Автор: Цыганова А.В., Цыганов В.Е.

Журнал: Сельскохозяйственная биология @agrobiology

Рубрика: Обзоры, проблемы

Статья в выпуске: 3 т.54, 2019 года.

Бесплатный доступ

Поскольку растительные клетки, в отличие от животных, неподвижны и ограничены жесткими клеточными стенками, часто свойства растительного внеклеточного матрикса играют решающую роль в развитии растения. Внеклеточный матрикс, в частности клеточные стенки, вовлечены в молекулярный диалог между партнерами во время взаимодействия растений и микроорганизмов при формировании бобово-ризобиального симбиоза (N.J. Brewin, 2004; M.K. Rich с соавт., 2014). Бобово-ризобиальный симбиоз служит удобной моделью для изучения изменений в составе растительной клеточной стенки, вызванных взаимодействием с бактериями. Колонизация клеток хозяина клубеньковыми бактериями - ризобиями включает последовательную перестройку растительно-микробного интерфейса. К бактериальным компонентам симбиотического интерфейса относятся различные поверхностные полисахариды (А.В. Цыганова с соавт., 2012), к растительным - клеточная стенка, межклеточный матрикс и плазматическая мембрана. В представляемом обзоре мы обобщили данные, демонстрирующие участие в бобово-ризобиальном симбиозе пектинов - полисахаридов матрикса клеточных стенок (K.H...

Еще

Бобово-ризобиальный симбиоз, растительно-микробный интерфейс, клеточная стенка, инфекционная нить, гомогалактуронан, рамногалактуронаны

Короткий адрес: https://sciup.org/142220118

IDR: 142220118   |   DOI: 10.15389/agrobiology.2019.3.446rus

Список литературы Растительная клеточная стенка в симбиотических взаимодействиях. Пектины

  • Cosgrove D.J. Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol., 2005, 6(11): 850-861 ( ) DOI: 10.1038/nrm1746
  • Malinovsky F.G., Fangel J.U., Willats W.G.T. The role of the cell wall in plant immunity. Front. Plant. Sci., 2014, 5: 178 ( ) DOI: 10.3389/fpls.2014.00178
  • Keegstra K. Plant cell walls. Plant Physiol., 2010, 154(2): 483-486 ( ) DOI: 10.1104/pp.110.161240
  • Lionetti V., Cervone F., Bellincampi D. Methyl esterification of pectin plays a role during plant-pathogen interactions and affects plant resistance to diseases. J. Plant Physiol., 2012, 169(16): 1623-1630 ( ) DOI: 10.1016/j.jplph.2012.05.006
  • Palin R., Geitmann A. The role of pectin in plant morphogenesis. Biosystems, 2012, 109(3): 397-402 ( ) DOI: 10.1016/j.biosystems.2012.04.006
  • Bellincampi D., Cervone F., Lionetti V. Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions. Front. Plant. Sci., 2014, 5: 228 ( )
  • DOI: 10.3389/fpls.2014.00228
  • Brewin N.J. Plant cell wall remodelling in the Rhizobium-legume symbiosis. Crit. Rev. Plant Sci., 2004, 23(4): 293-316 ( )
  • DOI: 10.1080/07352680490480734
  • Rich M.K., Schorderet M., Reinhardt D. The role of the cell wall compartment in mutualistic symbioses of plants. Front. Plant. Sci., 2014, 5: 238 ( )
  • DOI: 10.3389/fpls.2014.00238
  • Parniske M. Intracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease? Curr. Opin. Plant Biol., 2000, 3(4): 320-328 ( )
  • DOI: 10.1016/S1369-5266(00)00088-1
  • Rae A.L., Bonfante-Fasolo P., Brewin N.J. Structure and growth of infection threads in the legume symbiosis with Rhizobium leguminosarum. Plant J., 1992, 2(3): 385-395 ( )
  • DOI: 10.1111/j.1365-313X.1992.00385.x
  • Ivanova K.A., Tsyganova A.V., Brewin N.J., Tikhonovich I.A., Tsyganov V.E. Induction of host defences by Rhizobium during ineffective nodulation of pea (Pisum sativum L.) carrying symbiotically defective mutations sym40 (PsEFD), sym33 (PsIPD3/PsCYCLOPS) and sym42. Protoplasma, 2015, 252(6): 1505-1517 ( )
  • DOI: 10.1007/s00709-015-0780-y
  • Цыганова А.В., Цыганов В.Е., Борисов А.Ю., Тихонович И.А., Бревин Н.Д. Сравнительный цитохимический анализ распределения перекиси водорода у неэффективного мутанта гороха SGEFix-1 (sym40) и исходной линии SGE. Экологическая генетика, 2009, 7(3): 3-9.
  • Bradley D.J., Wood E.A., Larkins A.P., Galfre G., Butcher G.W., Brewin N.J. Isolation of monoclonal antibodies reacting with peribacteriod membranes and other components of pea root nodules containing Rhizobium leguminosarum. Planta, 1988, 173(2): 149-160 ( )
  • DOI: 10.1007/bf00403006
  • VandenBosch K.A., Bradley D.J., Knox J.P., Perotto S., Butcher G.W., Brewin N.J. Common components of the infection thread matrix and the intercellular space identified by immunocytochemical analysis of pea nodules and uninfected roots. EMBO J., 1989, 8(2): 335-341 ( )
  • DOI: 10.1002/j.1460-2075.1989.tb03382.x
  • Vincken J.-P., Schols H.A., Oomen R.J., McCann M.C., Ulvskov P., Voragen A.G., Visser R.G. If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture. Plant Physiol., 2003, 132(4): 1781-1789 ( )
  • DOI: 10.1104/pp.103.022350
  • Anderson C.T. We be jammin': an update on pectin biosynthesis, trafficking and dynamics. J. Exp. Bot., 2015, 67(2): 495-502 ( )
  • DOI: 10.1093/jxb/erv501
  • Atmodjo M.A., Hao Z., Mohnen D. Evolving views of pectin biosynthesis. Annu. Rev. Plant Biol., 2013, 64(1): 747-779 ( )
  • DOI: 10.1146/annurev-arplant-042811-105534
  • Caffall K.H., Mohnen D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr. Res., 2009, 344(14): 1879-1900 ( )
  • DOI: 10.1016/j.carres.2009.05.021
  • Saffer A.M. Expanding roles for pectins in plant development. J. Integr. Plant. Biol., 2018, 60(10): 910-923 ( )
  • DOI: 10.1111/jipb.12662
  • Larskaya I.A., Gorshkova T.A. Plant oligosaccharides -outsiders among elicitors? Biochemistry (Moscow), 2015, 80(7): 881-900 ( )
  • DOI: 10.1134/s0006297915070081
  • Willats W.G., Steele-King C.G., Marcus S.E., Knox J.P. Side chains of pectic polysaccharides are regulated in relation to cell proliferation and cell differentiation. Plant J., 1999, 20(6): 619-628 ( )
  • DOI: 10.1046/j.1365-313X.1999.00629.x
  • Peaucelle A., Louvet R., Johansen J.N., Höfte H., Laufs P., Pelloux J., Mouille G. Arabidopsis phyllotaxis is controlled by the methyl-esterification status of cell-wall pectins. Curr. Biol., 2008, 18(24): 1943-1948 ( )
  • DOI: 10.1016/j.cub.2008.10.065
  • McCartney L., Ormerod A.P., Gidley M.J., Knox J.P. Temporal and spatial regulation of pectic (1→4)-β-D-galactan in cell walls of developing pea cotyledons: implications for mechanical properties. Plant J., 2000, 22(2): 105-113 ( )
  • DOI: 10.1046/j.1365-313x.2000.00719.x
  • Mohnen D. Pectin structure and biosynthesis. Curr. Opin. Plant Biol., 2008, 11(3): 266-277 ( )
  • DOI: 10.1016/j.pbi.2008.03.006
  • Wolf S., Mouille G., Pelloux J. Homogalacturonan methyl-esterification and plant development. Mol. Plant, 2009, 2(5): 851-860 ( )
  • DOI: 10.1093/mp/ssp066
  • Lievens S., Goormachtig S., Herman S., Holsters M. Patterns of pectin methylesterase transcripts in developing stem nodules of Sesbania rostrata. Mol. Plant-Microbe Interact., 2002, 15(2): 164-168 ( )
  • DOI: 10.1094/MPMI.2002.15.2.164
  • Prade R.A., Zhan D., Ayoubi P., Mort A.J. Pectins, pectinases and plant-microbe interactions. Biotechnol. Genet. Eng. Rev., 1999, 16(1): 361-392 ( )
  • DOI: 10.1080/02648725.1999.10647984
  • Levesque-Tremblay G., Pelloux J., Braybrook S.A., Müller K. Tuning of pectin methylesterification: consequences for cell wall biomechanics and development. Planta, 2015, 242(4): 791-811 ( )
  • DOI: 10.1007/s00425-015-2358-5
  • Wolf S., Greiner S. Growth control by cell wall pectins. Protoplasma, 2012, 249(2): 169-175 ( )
  • DOI: 10.1007/s00709-011-0371-5
  • Pelloux J., Rustérucci C., Mellerowicz E.J. New insights into pectin methylesterase structure and function. Trends Plant Sci., 2007, 12(6): 267-277 ( )
  • DOI: 10.1016/j.tplants.2007.04.001
  • Lionetti V., Fabri E., De Caroli M., Hansen A.R., Willats W.G.T., Piro G., Bellincampi D. Three pectin methylesterase inhibitors protect cell wall integrity for Arabidopsis immunity to Botrytis. Plant Physiol., 2017, 173(3): 1844-1863 ( )
  • DOI: 10.1104/pp.16.01185
  • Peaucelle A., Braybrook S.A., Le Guillou L., Bron E., Kuhlemeier C., Höfte H. Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr. Biol., 2011, 21(20): 1720-1726 ( )
  • DOI: 10.1016/j.cub.2011.08.057
  • Pogorelko G., Lionetti V., Bellincampi D., Zabotina O. Cell wall integrity: Targeted post-synthetic modifications to reveal its role in plant growth and defense against pathogens. Plant Signal Behav., 2013, 8(9): e25435 ( )
  • DOI: 10.4161/psb.25435
  • Rodríguez-Llorente I.D., Pérez-Hormaeche J., Mounadi K.E., Dary M., Caviedes M.A., Cosson V., Kondorosi A., Ratet P., Palomares A.J. From pollen tubes to infection threads: recruitment of Medicago floral pectic genes for symbiosis. Plant J., 2004, 39(4): 587-598 ( )
  • DOI: 10.1111/j.1365-313X.2004.02155.x
  • Fauvart M., Verstraeten N., Dombrecht B., Venmans R., Beullens S., Heusdens C., Michiels J. Rhizobium etli HrpW is a pectin-degrading enzyme and differs from phytopathogenic homologues in enzymically crucial tryptophan and glycine residues. Microbiology, 2009, 155(9): 3045-3054 ( )
  • DOI: 10.1099/mic.0.027599-0
  • Muñoz J.A., Coronado C., Pérez-Hormaeche J., Kondorosi A., Ratet P., Palomares A.J. MsPG3, a Medicago sativa polygalacturonase gene expressed during the alfalfa-Rhizobium meliloti interaction. PNAS USA, 1998, 95(16): 9687-9692 ( )
  • DOI: 10.1073/pnas.95.16.9687
  • Xie F., Murray J.D., Kim J., Heckmann A.B., Edwards A., Oldroyd G.E.D., Downie J.A. Legume pectate lyase required for root infection by rhizobia. PNAS USA, 2012, 109(2): 633-638 ( )
  • DOI: 10.1073/pnas.1113992109
  • Knox J.P., Linstead P.J., King J., Cooper C., Roberts K. Pectin esterification is spatially regulated both within cell walls and between developing tissues of root apices. Planta, 1990, 181(4): 512-521 ( )
  • DOI: 10.1007/bf00193004
  • Verhertbruggen Y., Marcus S.E., Haeger A., Ordaz-Ortiz J.J., Knox J.P. An extended set of monoclonal antibodies to pectic homogalacturonan. Carbohydr. Res., 2009, 344(14): 1858-1862 ( )
  • DOI: 10.1016/j.carres.2008.11.010
  • Guillemin F., Guillon F., Bonnin E., Devaux M.-F., Chevalier T., Knox J.P., Liners F., Thibault J.-F. Distribution of pectic epitopes in cell walls of the sugar beet root. Planta, 2005, 222(2): 355-371 ( )
  • DOI: 10.1007/s00425-005-1535-3
  • Tsyganova A.V., Seliverstova E.V., Ivanova K.A., Brewin N.J., Tsyganov V.E. Comparative analysis of remodelling of the plant-microbe interface in Pisum sativum and Medicago truncatula symbiotic nodules. Protoplasma, 2019, 256(4): 983-996 ( )
  • DOI: 10.1007/s00709-019-01355-5
  • Sherrier D.J., Taylor G.S., Silverstein K.A.T., Gonzales M.B., VandenBosch K.A. Accumulation of extracellular proteins bearing unique proline-rich motifs in intercellular spaces of the legume nodule parenchyma. Protoplasma, 2005, 225(1): 43-55 ( )
  • DOI: 10.1007/s00709-005-0090-x
  • Ivanov S., Fedorova E.E., Limpens E., De Mita S., Genre A., Bonfante P., Bisseling T. Rhizobium-legume symbiosis shares an exocytotic pathway required for arbuscule formation. PNAS USA, 2012, 109(21): 8316-8321 ( )
  • DOI: 10.1073/pnas.1200407109
  • Gavrin A., Chiasson D., Ovchinnikova E., Kaiser B.N., Bisseling T., Fedorova E.E. VAMP721a and VAMP721d are important for pectin dynamics and release of bacteria in soybean nodules. New Phytol., 2016, 210(3): 1011-1021 ( )
  • DOI: 10.1111/nph.13837
  • Redondo-Nieto M., Pulido L., Reguera M., Bonilla I., Bolaños L. Developmentally regulated membrane glycoproteins sharing antigenicity with rhamnogalacturonan II are not detected in nodulated boron deficient Pisum sativum. Plant Cell Environ., 2007, 30(11): 1436-1443 ( )
  • DOI: 10.1111/j.1365-3040.2007.01721.x
  • Redondo-Nieto M., Wilmot A.R., El-Hamdaoui A., Bonilla I., Bolaños L. Relationship between boron and calcium in the N2-fixing legume-rhizobia symbiosis. Plant Cell Environ., 2003, 26(11): 1905-1915 ( )
  • DOI: 10.1046/j.1365-3040.2003.01107.x
  • Sujkowska-Rybkowska M., Borucki W. Pectins esterification in the apoplast of aluminum-treated pea root nodules. J. Plant Physiol., 2015, 184: 1-7 ( )
  • DOI: 10.1016/j.jplph.2015.05.011
  • Carpena R.O., Esteban E., Sarro M.J., Peñalosa J., Gárate A.N., Lucena J.J., Zornoza P. Boron and calcium distribution in nitrogen-fixing pea plants. Plant Sci., 2000, 151(2): 163-170 ( )
  • DOI: 10.1016/S0168-9452(99)00210-1
  • O'Neill M.A., Ishii T., Albersheim P., Darvill A.G. Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu. Rev. Plant Biol., 2004, 55(1): 109-139 ( 10.1146/annurev.arplant.55.031903.141750)
  • DOI: :10.1146/annurev.arplant.55.031903.141750
  • Redondo-Nieto M., Maunoury N., Mergaert P., Kondorosi E., Bonilla I., Bolaños L. Boron and calcium induce major changes in gene expression during legume nodule organogenesis. Does boron have a role in signalling? New Phytol., 2012, 195(1): 14-19 ( )
  • DOI: 10.1111/j.1469-8137.2012.04176.x
  • Bolaños L., Brewin N.J., Bonilla I. Effects of Boron on Rhizobium-legume cell-surface interactions and nodule development. Plant Physiol., 1996, 110(4): 1249-1256 ( )
  • DOI: 10.1104/pp.110.4.1249
  • Bolaños L., Cebrián A., Redondo-Nieto M., Rivilla R., Bonilla I. Lectin-like glycoprotein PsNLEC-1 is not correctly glycosylated and targeted in boron-deficient pea nodules. Mol. Plant-Microbe Interact., 2001, 14(5): 663-670 ( )
  • DOI: 10.1094/MPMI.2001.14.5.663
  • Bolaños L., Esteban E., de Lorenzo C., Fernandez-Pascual M., de Felipe M.R., Garate A., Bonilla I. Essentiality of boron for symbiotic dinitrogen fixation in pea (Pisum sativum) rhizobium nodules. Plant Physiol., 1994, 104(1): 85-90 ( )
  • DOI: 10.1104/pp.104.1.85
  • Bonilla I., Mergold-Villasenor C., Campos M.E., Sanchez N., Perez H., Lopez L., Cas-trejon L., Sanchez F., Cassab G.I. The aberrant cell walls of boron-deficient bean root nodules have no covalently bound hydroxyproline/proline-rich proteins. Plant Physiol., 1997, 115(4): 1329-1340 ( )
  • DOI: 10.1104/pp.115.4.1329
  • Matoh T., Takasaki M., Takabe K., Kobayashi M. Immunocytochemistry of rhamno-galacturonan II in cell walls of higher plants. Plant Cell Physiol., 1998, 39(5): 483-491 ( )
  • DOI: 10.1093/oxfordjournals.pcp.a029395
  • Reguera M., Abreu I., Brewin N.J., Bonilla I., Bolaños L. Borate promotes the formation of a complex between legume AGP-extensin and rhamnogalacturonan II and enhances production of Rhizobium capsular polysaccharide during infection thread development in Pisum sativum symbiotic root nodules. Plant Cell Environ., 2010, 33(12): 2112-2120 ( )
  • DOI: 10.1111/j.1365-3040.2010.02209.x
  • Горшкова Т.А., Козлова Л.В., Микшина П.В. Пространственная структура полисахаридов растительных клеточных стенок и ее функциональная значимость (обзор). Биохимия, 2013, 78(7): 1068-1088.
  • Микшина П.В., Петрова А.А., Файзуллин Д.А., Зуев Ю.Ф., Горшкова Т.А. Рамнога-лактуронан I желатинозных волокон льна формирует гель, обладающий гиперэлас-тичными свойствами. Биохимия, 2015, 80(7): 1088-1098.
  • Lee K.J.D., Cornuault V., Manfield I.W., Ralet M.-C., Knox P.J. Multi-scale spatial hete-rogeneity of pectic rhamnogalacturonan I (RG-I) structural features in tobacco seed endosperm cell walls. Plant J., 2013, 75(6): 1018-1027 ( )
  • DOI: 10.1111/tpj.12263
  • Jones L., Seymour G.B., Knox J.P. Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to (1→4)-b-D-galactan. Plant Physiol., 1997, 113(4): 1405-1412 ( )
  • DOI: 10.1104/pp.113.4.1405
  • Moore P.J., Staehelin L.A. Immunogold localization of the cell-wall-matrix polysaccharides rhamnogalacturonan I and xyloglucan during cell expansion and cytokinesis in Trifolium pratense L.; implication for secretory pathways. Planta, 1988, 174(4): 433-445 ( )
  • DOI: 10.1007/bf00634471
  • Corral-Martínez P., García-Fortea E., Bernard S., Driouich A., Seguí-Simarro J.M. Ultra-structural immunolocalization of arabinogalactan protein, pectin and hemicellulose epitopes through anther development in Brassica napus. Plant Cell Physiol., 2016, 57(10): 2161-2174 ( )
  • DOI: 10.1093/pcp/pcw133
  • Liu J., Hou J., Chen H., Pei K., Li Y., He X.-Q. Dynamic changes of pectin epitopes in cell walls during the development of the procambium-cambium continuum in poplar. Int. J. Mol. Sci., 2017, 18(8): 1716 ( )
  • DOI: 10.3390/ijms18081716
  • Torode T.A., O'Neill R., Marcus S.E., Cornuault V., Pose S., Lauder R.P., Kračun S.K., Rydahl M.G., Andersen M.C., Willats W.G. Branched pectic galactan in phloem-sieve-element cell walls: implications for cell mechanics. Plant Physiol., 2018, 176(2): 1547-1558 ( )
  • DOI: 10.1104/pp.17.01568
  • Lehner A., Dardelle F., Soret-Morvan O., Lerouge P., Driouich A., Mollet J.-C. Pectins in the cell wall of Arabidopsis thaliana pollen tube and pistil. Plant Signal Behav., 2010, 5(10): 1282-1285 ( )
  • DOI: 10.4161/psb.5.10.13040
  • Tsyganova A.V., Seliverstova E.V., Brewin N.J., Tsyganov V.E. Bacterial release is accompanied by ectopic accumulation of cell wall material around the vacuole in nodules of Pisum sativum sym33-3 allele encoding transcription factor PsCYCLOPS/PsIPD3. Protoplasma, 2019 ( )
  • DOI: 10.1007/s00709-019-01383-1
  • Gorshkov V.Y., Daminova A.G., Mikshina P.V., Petrova O.E., Ageeva M.V., Salnikov V.V., Gorshkova T.A., Gogolev Y.V. Pathogen-induced conditioning of the primary xylem vessels -a prerequisite for the formation of bacterial emboli by Pectobacterium atrosepticum. Plant Biol., 2016, 18(4): 609-617 ( )
  • DOI: 10.1111/plb.12448
Еще
Статья обзорная