Разнообразие алкалоидов и вирулентность спорыньи Claviceps purpurea (fries) Tulasne: эволюция, генетическая диверсификация, метаболическая инженерия (обзор)

Автор: Волнин А.А., Савин П.С.

Журнал: Сельскохозяйственная биология @agrobiology

Рубрика: Обзоры, проблемы, итоги

Статья в выпуске: 5 т.57, 2022 года.

Бесплатный доступ

Спорынья Claviceps purpurea (Fries) Tulasne имеет важнейшее хозяйтвенное значение: это продуцент большого количества биологически активных соединений - алкалоидов, уникальная модель системы паразит-хозяин, а также патоген, наносящий значительный экономический ущерб сельскому хозяйству. Место происхождения спорыньи - Южная Америка (в палеоцене), возраст Claviceps оценивается в 20,4 млн лет (K. Píchová с соавт., 2018). Внутривидовое разнообразие и дивергенция генов кластера синтеза индольных алкалоидов у спорыньи происходили согласно эволюционной модели «песочных часов» (M. Liu с соавт., 2021). Выделены и охарактеризованы основные эргоалкалоиды C. purpurea - эргометрин, эргозин, эрготамин, a-эргокриптин, эргокорнин, эргокристин и их 8-S(-инин-) эпимеры (они составляли не менее 50 % от общего извлеченного метаболома алкалоидов) (S. Uhlig с соавт., 2021). Показано разное число генов алкалоидного кластера у Claviceps , наличие двух-трех копий генов dmaW , easE , easF , а также факты частых приобретений и потерь генов (M. Liu с соавт., 2021). Различия в метаболомных профилях алкалоидов C. purpurea коррелировали с различиями в гене lpsA : разнообразие алкалоидов спорыньи обусловлено вариабельностью последовательностей в тандемно дублированной области easH / lpsA (C. Hicks с соавт., 2021). Гены lpsA1 и lpsA2 были результатом события рекомбинации (S. Wyka с соавт., 2022). Предполагается, что гены lpsA подвергаются рекомбинационному перетасовыванию (C. Hicks с соавт., 2021). Для C. purpurea показаны высокие скорости рекомбинации (ρ = 0,044), относительно большой акцессорный геном (38 %) и транспозон-опосредованная дупликация генов (S. Wyka с соавт., 2022). Разработана трансгенная линия дрожжей, синтезирующая энантиочистую D-лизергиновую кислоту до титра 1,7 мг/л (G. Wong с соавт., 2022). Генно-инженерные культуры Metarhizium brunneum дают относительный процент выхода D-лизергиновой кислоты 86,9 % и дигидролизиргиновой кислоты 72,8 % (K. Davis с соавт., 2020). Экспрессия генов trpE , а также dmaW количественно связана с интенсивностью синтеза алкалоидов у сапрофитных культур спорыньи (M. Králová с соавт., 2021). Пектин служит основной мишенью CAZymes белков, ответственных за деградацию клеточной стенки при инфицировании растения C. purpurea и C. paspali (B. Oeser с соавт., 2017; H. Oberti с соавт., 2021). Значительный вклад в вирулентность спорыньи вносят полигалактуроназа, MAP-киназа, фактор регуляции транскрипции CPTF1 (ген Cptf1 ), малая GTP-аза (ген Cdc42 ) (B. Oeser с соавт., 2017; E. Tente с соавт., 2021). Спорынья влияет на гормональные пути растения с участием ауксина, этилена и цитокинина (эффект дифференцирован относительно типа ткани и времени после заражения) (E. Tente, 2020, Tente с соавт., 2021). У пшеницы устойчивость к спорынье связана с мутациями в белках DELLA (E. Tente, 2020; A. Gordon с соавт., 2020), у ржи - с активностью пектинэстеразы и метаболическими процессами модификации клеточной стенки и роста пыльцевых трубок (COBRA-подобный белок и ингибитор пектинэстеразы) (K. Mahmood с соавт., 2020).

Еще

Claviceps purpurea, спорынья, алкалоиды, пути биосинтеза, токсичность, вирулентность, генотип, генные кластеры, claviceps

Короткий адрес: https://sciup.org/142236375

IDR: 142236375   |   DOI: 10.15389/agrobiology.2022.5.852rus

Список литературы Разнообразие алкалоидов и вирулентность спорыньи Claviceps purpurea (fries) Tulasne: эволюция, генетическая диверсификация, метаболическая инженерия (обзор)

  • Jamieson C.S., Misa J., Tang Y., Billingsley J.M. Biosynthesis and synthetic biology of psychoactive natural products. Chemical Society Reviews, 2021, 50(12): 6950-7008 (doi: 10.1039/d1cs00065a).
  • Rämä T., Quandt C.A. Improving fungal cultivability for natural products discovery. Frontires in Microbiology, 2021, 12: 706044 (doi: 10.3389/fmicb.2021.706044).
  • Liu H., Jia Y. Ergot alkaloids: synthetic approaches to lysergic acid and clavine alkaloids. Natural Product Reports, 2017, 34(4): 411-432 (doi: 10.1039/c6np00110f).
  • Gerhards N., Matuschek M., Wallwey C., Li S.M. Genome mining of ascomycetous fungi reveals their genetic potential for ergot alkaloid production. Archives Microbiology, 2015, 197(5): 701-713 (doi: 10.1007/s00203-015-1105-4).
  • Chan J.D., Agbedanu P.N., Grab T., Zamanian M., Dosa P.I., Day T.A., Marchant J.S. Ergot Alkaloids (re)generate new leads as antiparasitics. PLoS Neglected Tropical Diseases, 2015, 9(9): e0004063 (doi: 10.1371/journal.pntd.0004063).
  • Smakosz A., Kurzyna W., Rudko M., D^sal M. The usage of ergot (Clavicepspurpurea (Fr.) Tul.) in obstetrics and gynecology: a historical perspective. Toxins, 2021, 13(7): 492 (doi: 10.3390/toxins13070492).
  • Kralova M., Bergougnoux V., Frebort I., CRISPR/Cas9 genome editing in ergot fungus Claviceps purpurea. Journal of Biotechnology, 2021, 325: 341-354 (doi: 10.1016/jjbiotec.2020.09.028).
  • Kralova M., Frebortova J., Pencik A., Frebort I. Overexpression of Trp-related genes in Claviceps purpurea leading to increased ergot alkaloid production. New Biotechnology, 2021, 61: 69-79 (doi: 10.1016/j.nbt.2020.11.003).
  • Wong G., Lim L.R., Tan Y.Q., Go M.K., Bell D.J., Freemont P.S., Yew W.S. Reconstituting the complete biosynthesis of D-lysergic acid in yeast. Nature Communication, 2022, 13(1): 712 (doi: 10.1038/s41467-022-28386-6).
  • Lieberman A., Kupersmith M., Estey E., Goldstein M. Treatment of Parkinson's disease with bromocriptine. New England Journal of Medicine, 1976, 295(25): 1400-1404 (doi: 10.1056/NEJM197612162952504).
  • Winblad B., Fioravanti M., Dolezal T., Logina I., Milanov I.G., Popescu D.C., Solomon A. Therapeutic use of nicergoline. Clinical Drug Investigation, 2008, 28(9): 533-552 (doi: 10.2165/00044011-200828090-00001).
  • Tandowsky R.M. Clinical evaluation of combined hydrogenated ergot alkaloids (hydergine) in arterial hypertension: with special reference to their action in central manifestations. Circulation, 1954, 9(1): 48-56 (doi: 10.1161/01.cir.9.1.48).
  • Johnson J.W., Ellis M.J., Piquette Z.A., MacNair C., Carfrae L., Bhando T., Ritchie N.E., Saliba P., Brown E.D., Magolan J. Antibacterial activity of metergoline analogues: revisiting the ergot alkaloid scaffold for antibiotic discovery. ACS Medicinal Chemistry Letters, 2022, 13(2): 284291 (doi: 10.1021/acsmedchemlett. 1c00648).
  • Фитопрепараты ВИЛАР: научно-справочное издание /Под ред. Т.А. Сокольской. М., 2009.
  • Савина Т.А., Савин П.С., Бобылева Р.И. Экзогенная биорегуляция развития Oaviceps purpurea (Fr.) Tul. (обзор). Вопросы биологической, медицинской и фармацевтической химии, 2018, 21(12): 28-34 (doi: 10.29296/25877313-2018-12-06).
  • Бобылева Р.И., Савин П.С. Физиологические и технологические аспекты биосинтеза эр-гоалкалоидов в сапрофитной культуре Oaviceps purpurea (Fr.) Tulasne (обзор). Вопросы биологической, медицинской и фармацевтической химии, 2019, 22(10): 30-36 (doi: 10.29296/25877313-2019-10-05).
  • Бобылева Р.И., Савин П.С. Изучение морфологических и физиолого-биохимических особенностей штамма Claviceps purpurea (Fries) Tulasne bkmf-2641d в сапрофитной культуре. Вопросы биологической, медицинской и фармацевтической химии, 2021, 24(12): 57-62 (doi: 10.29296/25877313-2021-12-09).
  • Franzmann C., Schröder J., Münzing K., Wolf K., Lindhauer M.G., Humpf H. Distribution of ergot alkaloids and ricinoleic acid in different milling fractions. Mycotoxin Research, 2011, 27(1): 13-21 (doi: 10.1007/s12550-010-0070-7).
  • Menzies J.G., Turkington T.K. An overview of the ergot (Claviceps purpurea) issue in western Canada: challenges and solutions. Canadian Journal of Plant Pathology, 2015, 37(1): 40-51 (doi: 10.1080/07060661.2014.986527).
  • Klotz J.L. Activities and effects of ergot alkaloids on livestock physiology and production. Toxins, 2015, 7(8): 2801-2821 (doi: 10.3390/toxins7082801).
  • Klotz J.L., Nicol A.M. Ergovaline, an endophytic alkaloid. 1. Animal physiology and metabolism. Animal Production Science, 2016, 56: 1761-1774 (doi: 10.1071/AN14962).
  • Reddy P., Hemsworth J., Guthridge K.M., Vinh A., Vassiliadis S., Ezernieks V., Spangenberg G.C., Rochfort S.J. Ergot alkaloid mycotoxins: physiological effects, metabolism and distribution of the residual toxin in mice. Scientific Reports, 2020, 10(1): 9714 (doi: 10.1038/s41598-020-66358-2).
  • Bauermeister A., Aguiar F., Marques L., Malta J., Barros F., Callejon D., Lopes N. In vitro metabolism evaluation of the ergot alkaloid dihydroergotamine: application of microsomal and biomimetic oxidative model. Planta Medica, 2016, 82(15): 1368-1373 (doi:1 0.1055/s-0042-111732).
  • Lünne F., Niehaus E.-M., Lipinski S., Kunigkeit J., Kalinina S. A., Humpf H.-U. Identification of the polyketide synthase PKS7 responsible for the production of lecanoric acid and ethyl lecano-rate in Claviceps purpurea. Fungal Genetics and Biology, 2020, 145: 103481 (doi: 10.1016/j.fgb.2020.103481).
  • Flieger M., Stodûlkovâ E., Wyka S.A., Cerny J., Grobarova V., Pichova K., Novak P., Man P., Kuzma M., Cvak L., Broders K.D., Kolarik M. Ergochromes: heretofore neglected side of ergot toxicity. Toxins (Basel), 2019, 11(8): 439 (doi: 10.3390/toxins11080439).
  • Uhlig S., Botha C.J., Vrelstad T., Rolen E., Miles C.O. Indole-diterpenes and ergot alkaloids in Cynodon dactylon (Bermuda grass) infected with Claviceps cynodontis from an outbreak of tremors in cattle. Journal of Agricultural and Food Chemistry, 2009, 57(23): 11112-11119 (doi: 10.1021/jf902208w).
  • Kozak L., Szilagyi Z., Vagy B., Kakuk A., Tyth L., Molnar I., Pycsi I. Inactivation of the indole-diterpene biosynthetic gene cluster of Claviceps paspali by Agrobacterium-mediated gene replacement. Applied Microbiology and Biotechnology, 2018, 102(7): 3255-3266 (doi: 10.1007/s00253-018-8807-x).
  • Kozak L., Szilagyi Z., Töth L., Pöcsi I., Molnar I. Functional characterization of the idtF and idtP genes in the Claviceps paspali indole diterpene biosynthetic gene cluster. Folia Microbiologica, 2020, 65(3): 605-613 (doi: 10.1007/s12223-020-00777-6).
  • Dopstadt J., Neubauer L., Tudzynski P., Humpf H.-U. The epipolythiodiketopiperazine gene cluster in Claviceps purpurea: dysfunctional cytochrome P450 enzyme prevents formation of the previously unknown clapurines. PLoS ONE, 2016, 11(7): e0158945 (doi: 10.1371/journal.pone.0158945).
  • Florea S., Panaccione D.G., Schardl C.L. Ergot alkaloids of the family Clavicipitaceae. Phytopathology, 2017, 107(5): 504-518 (doi: 10.1094/PHYT0-12-16-0435-RVW).
  • Schwake-Anduschus C., Lorenz N., Lahrssen-Wiederholt M., Lauche A., Dänicke S. German monitoring 2012-2014: ergot of Claviceps purpurea and ergot alkaloids (EA) in feedingstuffs and their toxicological relevance for animal feeding. Journal für Verbraucherschutz und Lebensmittelsicherheit, 2020, 15: 321-329 (doi: 10.1007/s00003-020-01298-7).
  • Tente E. Investigations into the molecular interactions between Claviceps purpurea, the causal agent of ergot, and cereal hosts. Doctoral thesis, University of Cambridge, 2020 (doi: 10.17863/CAM.64578).
  • Wallwey C., Li S. Ergot alkaloids: structure diversity, biosynthetic gene clusters and functional proof of biosynthetic genes. Natural Product Reports, 2011, 28(3): 496-510 (doi: 10.1039/c0np00060d).
  • Robinson S.L., Panaccione D.G. Diversification of ergot alkaloids in natural and modified fungi. Toxins, 2015, 7: 201-218 (doi: 10.3390/toxins7010201).
  • Young C.A., Schardl C.L., Panaccione D.G., Florea S., Takach J.E., Charlton N.D., Moore N., Webb J.S., Jaromczyk J. Genetics, genomics and evolution of ergot alkaloid diversity. Toxins (Basel), 2015, 7(4): 1273-1302 (doi: 10.3390/toxins7041273).
  • Chen J., Han M., Gong T., Yang J., Zhu P. Recent progress in ergot alkaloid research. RSC Advances, 2017, 7(44): 27384-27396 (doi: 10.1039/C7RA03152A).
  • Tasker N.R., Wipf P. Biosynthesis, total synthesis, and biological profiles of ergot alkaloids. Alkaloids: Chemistry and Biology, 2021, 85: 1-112 (doi: 10.1016/bs.alkal.2020.08.001).
  • Hinsch J., Tudzynski P. Claviceps: the Ergot fungus. In: Molecular biology of food and water borne mycotoxigenic and mycotic fungi, 1st edn /R. Paterson, N.Lima (eds.). CRC Press, Boca Raton, 2015: 229-250.
  • Miedaner T., Geiger H.H. Biology, genetics, and management of ergot (Claviceps spp.) in rye, sorghum, and pearl millet. Toxins (Basel), 2015, 7(3): 659-678 (doi: 10.3390/toxins7030659).
  • Mantle P. Comparative ergot alkaloid elaboration by selected plectenchymatic mycelia of Claviceps purpurea through sequential cycles of axenic culture and plant parasitism. Biology (Basel), 2020, 9(3): 41 (doi: 10.3390/biology9030041).
  • Wingfield B.D., Liu M., Nguyen H.D.T.; Lane F.A., Morgan S.W., De Vos L., Wilken P.M., Duong T.A., Aylward J.C., Martin P.A., Dadej K., De Beer Z.W., Findlay W., Havenga M.,
  • Kolarik M., Menzies J.G., Naidoo K., Pochopski O., Shoukouhi P., Santana Q.C., Seifert K.A., Soal N., Steenkamp E.T., Tatham C.T., van der Nest M.A., Wingfield M.J. Nine draft genome sequences of Claviceps purpurea s.lat., including C. arundinis, C. humidiphila, and C. cf. spartinae, pseudomolecules for the pitch canker pathogen Fusarium circinatum, draft genome of Davidsoniella eucalypti, Grosmannia galeiformis, Quambalaria eucalypti, and Teratosphaeria destructans. IMA Fungus, 2018, 9(2): 401-418 (doi: 10.5598/imafungus.2018.09.02.10).
  • Wyka S., Mondo S., Liu M., Nalam V., Broders K. A large accessory genome and high recombination rates may influence global distribution and broad host range of the fungal plant pathogen Claviceps purpurea. PLoS ONE, 2022, 17(2): e0263496 (doi: 10.1371/journal.pone.0263496).
  • Wyka S.A., Mondo S.J., Liu M., Dettman J., Nalam V., Broders K.D. Whole-genome comparisons of ergot fungi reveals the divergence and evolution of species within the genus Claviceps are the result of varying mechanisms driving genome evolution and host range expansion. Genome Biology and Evolution, 2021, 13(2): evaa267 (doi: 10.1093/gbe/evaa267).
  • Liu M., Findlay W., Dettman J., Wyka S.A., Broders K., Shoukouhi P., Dadej K., Kola Hk M., Basnyat A., Menzies J.G. Mining indole alkaloid synthesis gene clusters from genomes of 53 Claviceps strains revealed redundant gene copies and an approximate evolutionary hourglass model. Toxins, 2021, 13(11): 799 (doi: 10.3390/toxins13110799).
  • Hicks C., Witte T.E., Sproule A., Lee T., Shoukouhi P., Popovic Z., Menzies J.G., Boddy C.N., Liu M., Overy D.P. Evolution of the ergot alkaloid biosynthetic gene cluster results in divergent mycotoxin profiles in Claviceps purpurea Sclerotia. Toxins, 2021, 13(12): 861 (doi: 10.3390/toxins13120861).
  • Schardl C.L., Young C.A., Hesse U., Amyotte S.G., Andreeva K., Calie P.J., Fleetwood D.J., Haws D.C., Moore N., Oeser B., Panaccione D.G., Schweri K.K., Voisey C.R., Farman M.L., Jaromczyk J.W., Roe B.A., O'Sullivan D.M., Scott B., Tudzynski P., An Z., Arnaoudova E.G., Bullock C.T., Charlton N.D., Chen L., Cox M., Dinkins R.D., Florea S., Glenn A.E., Gordon A., Güldener U., Harris D.R., Hollin W., Jaromczyk J., Johnson R.D., Khan A.K., Leistner E., Leuchtmann A., Li C., Liu J., Liu J., Liu M., Mace W., Machado C., Nagabhyru P., Pan J., Schmid J., Sugawara K., Steiner U., Takach J.E., Tanaka E., Webb J.S., Wilson E.V., Wiseman J.L., Yoshida R., Zeng Z. Plant-symbiotic fungi as chemical engineers: Multi-genome analysis of the Oavicipitaceae reveals dynamics of alkaloid loci. PLoS Genetetics, 2013, 9(2): e1003323 (doi: 10.1371/journal.pgen.1003323).
  • Oeser B., Kind S., Schurack S., Schmutzer T., Tudzynski P., Hinsch J. Cross-talk of the bio-trophic pathogen Claviceps purpurea and its host Secale cereale. BMC Genomics, 2017, 18: 273 (doi: 10.1186/s12864-017-3619-4).
  • Oberti H., Abreo E., Reyno R., Feijoo M., Murchio S., Dalla-Rizza M., Rokas A. New draft genome sequence of the ergot disease fungus Claviceps paspali. Microbiology Resource Announcements, 2020, 9(29): e00498-20 (doi: 10.1128/MRA.00498-20).
  • Tente E., Ereful N., Rodriguez A.C., Grant P., O'Sullivan D.M., Boyd L.A., Gordon A. Reprogramming of the wheat transcriptome in response to infection with Claviceps purpurea, the causal agent of ergot. BMC Plant Biology, 2021, 21: 316 (doi: 10.1186/s12870-021-03086-3).
  • Pichova K., Pazoutova S., Kostovcik M., Chudickova M., Stodülkova E., Novak P., Flieger M., van der Linde E., Kolarik M. Evolutionary history of ergot with a new infrageneric classification (Hypocreales: Clavicipitaceae: Claviceps). Molecular Phylogenetics and Evolution, 2018, 123: 73-87 (doi: 10.1016/j.ympev.2018.02.013).
  • Bouchenak-Khelladi Y., Verboom G.A., Savolainen V., Hodkinson T.R. Biogeography of the grasses Poaceae: a phylogenetic approach toreveal evolutionary history in geographical space and geologicaltime. Botanical Journal of the Linnean Society, 2010, 162(4): 543-557 (doi: 10.1111/j.1095-8339.2010.01041.x).
  • Soreng R.J., Peterson P.M., Romaschenko K., Davidse G., Teisher J.K., Clark L.G., Barber P., Gillespie L.J., Zuloaga F.O. A worldwide phylogenetic classification of the Poaceae gramineae II: an update and a comparison of two 2015 classifications. Journal of Systematics and Evolution, 2017, 55(4): 259-290 (doi: 10.1111/jse.12150).
  • Pazoutova S., Pesicova K., Chudickova M., Sratka P., Kolarik M. Delimitation of cryptic species inside Claviceps purpurea. Fungal Biology, 2015, 119(1): 7-26 (doi: 10.1016/j.funbio.2014.10.003).
  • Liu M., Overy D.P., Cayouette J., Shoukouhi P., Hicks C., Bisson K., Sproule A., Wyka S.A., Broders K., Popovic Z., Menzies J.G. Four phylogenetic species of ergot from Canada and their characteristics in morphology, alkaloid production, and pathogenicity. Mycologia, 2020, 112(5): 974-988 (doi: 10.1080/00275514.2020.1797372).
  • Oberti H., Dalla R.M., Reyno R., Murchio S., Altier N., Abreo E. Diversity of Claviceps paspali reveals unknown lineages and unique alkaloid genotypes. Mycologia, 2020, 112(2): 230-243 (doi: 10.1080/00275514.2019.1694827).
  • Liu M., Tanaka E., Kolarik M. Neotypification of Claviceps humidiphila and recognition of C. bavariensis sp. nov. Mycotaxon, 2022, 137(1): 73-87 (doi: 10.5248/137.73).
  • Wyka S., Broders K. Population biology and comparative genomics of Claviceps purpurea and other defensive mutualists in the Hypocreales. In: Рoster thesis of 2017 APS Annual Meeting, San Antonio, USA, 2017: 126 (doi: 10.13140/RG.2.2.26063.38567). '
  • Liu M., Shoukouhi P., Bisson K.R., Wyka S.A., Broders K.D., Menzies J.G. Sympatric divergence of the ergot fungus, Claviceps purpurea, populations infecting agricultural and nonagri-cultural grasses in North America. Ecology and Evolution, 2021, 11(1): 273-293 (doi: 10.1002/ece3.7028).
  • Cheng Q., Frost K., Dung J.K.S. Population genetic structure of Claviceps purpurea in cool-season grass seed crops of Oregon. Phytopathology, 2020, 110(11): 1773-1778 (doi: 10.1094/phyto-01-20-0005-r).
  • Dung J.K.S., Duringer J.M., Kaur N., Scott J.C., Frost K.E., Walenta D.L., Alderman S.C., Craig A.M., Hamm P.B. Molecular and alkaloid characterization of Claviceps purpurea sensu lato from grass seed production areas of the U.S. Pacific Northwest. Phytopathology, 2021, 111(5): 831-841 (doi: 10.1094/PHYT0-07-20-0289-R).
  • Pazoutova S., Olsovska J., Linka M., Kolinska R., Flieger M. Chemoraces and habitat specialization of Claviceps purpurea populations. Applied and Environmental Microbiology, 2000, 66(12): 5419-5425 (doi: 10.1128/AEM.66.12.5419-5425.2000).
  • Douhan G.W., Smith M.E., Huyrn K.L., Westbrook A., Beerli P., Fisher A.J. Multigene analysis suggests ecological speciation in the fungal pathogen Claviceps purpurea. Molecular Ecology, 2008, 17(9): 2276-2286 (doi: 10.1111/j.1365-294X.2008.03753.x).
  • Jungehülsing U., Tudzynski P. Analysis of genetic diversity in Claviceps purpurea by RAPD markers. Mycological Research, 1997, 101(1): 1-6 (doi: 10.1017/S0953756296001657).
  • Slack J.M.W., Holland P.W.H., Graham C.F. The zootype and the phylotypic stage. Nature, 1993, 361(6412): 490-492 (doi: 10.1038/361490a0).
  • Duboule D. Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Development Supplement, 1994, 1994: 135-142 (doi: 10.1242/dev.1994.Supplement.135).
  • Prud'homme B., Gompel N. Genomic hourglass. Nature, 2010, 468(7325): 768-769 (doi: 10.1038/468768a).
  • Galis F., van Dooren T.J., Metz J.A. Conservation of the segmented germband stage: Robustness or pleiotropy? Trends in Genetics, 2002, 18(10): 504-509 (doi: 10.1016/S0168-9525(02)02739-7).
  • Panaccione D.G. Origins and significance of ergot alkaloid diversity in fungi. FEMS Microbiology Letters, 2005, 251(1): 9-17 (doi: 10.1016/j.femsle.2005.07.039).
  • Gilmore B.S., Alderman S.C., Knaus B.J., Bassil N.V., Martin R.C., Dombrowski J.E., Dung J.K.S. Simple sequence repeat markers that identify Claviceps species and strains. Fungal Biology and Biotechnology, 2016, 3(1): 1-13 (doi: 10.1186/s40694-016-0019-5).
  • Shoukouhi P., Hicks C., Menzies J.G., Popovic Z., Chen W., Seifert K.A., Assabgui R., Liu M. Phylogeny of Canadian ergot fungi and a detection assay by real-time polymerase chain reaction. Mycologia, 2019, 111(3): 493-505 (doi: 10.1080/00275514.2019.1581018).
  • Uhlig S., Rangel-Huerta O.D., Divon H.H., Rolen E., Pauchon K., Sumarah M.W., Vrelstad T., Renaud J.B. Unraveling the ergot alkaloid and indole diterpenoid metabolome in the claviceps purpurea species complex using LC-HRMS/MS diagnostic fragmentation filtering. Journal of Agricultural and Food Chemistry, 2021, 69(25): 7137-7148 (doi: 10.1021/acs.jafc.1c01973).
  • Hulvova H., Galuszka P., Frebortova J., Frebort I. Parasitic fungus Claviceps as a source for biotechnological production of ergot alkaloids. Biotechnology Advances, 2013, 31(1): 79-89 (doi: 10.1016/j.biotechadv.2012.01.005).
  • Yao Y., Wang W., Shi W., Yan R., Zhang J., Wei G., Liu L., Che Y., An C., Gao S., Overproduction of medicinal ergot alkaloids based on a fungal platform. Metabolic Engineering, 2022, 69: 198-208 (doi: 10.1016/j.ymben.2021.12.002).
  • Hendrickson J.B., Wang J. A new synthesis of lysergic acid. Organic Letters, 2004, 6(1): 3-5 (doi: 10.1021/ol0354369).
  • Umezaki S., Yokoshima S., Fukuyama T. Total synthesis of lysergic acid. Organic Letters, 2013, 15(16): 4230-4233 (doi: 10.1021/ol4019562).
  • Majeska Cudejkova M., Vojta P., Valik J., Galuszka P. Quantitative and qualitative transcriptome analysis of four industrial strains of Claviceps purpurea with respect to ergot alkaloid production. New Biotechnology, 2016, 33(5 Pt B): 743-754 (doi: 10.1016/j.nbt.2016.01.006).
  • Фонин В.С., Сидякина Т.М., Шаин С.С., Озерская С.М., Павлова Е.Ф. Изучение условий хранения промышленных штаммов паразитарной культуры спорыньи. Прикладная биохимия и микробиология, 1996, 32(4): 406-410.
  • Tonolo A., Scotti T., Vero-Barcellona L. Morphological observations on different species of Claviceps Tul. grown in submerged culture. Scientific Reports of the Istituto Superiore di Sanita, 1961, 1: 404-422.
  • Mantle P.G., Tonolo A. Relationship between the morphology of Claviceps purpurea and the production of alkaloids. Transactions of the British Mycological Society, 1968, 51(3-4): 499-505 (doi: 10.1016/S0007-1536(68)80017-8).
  • Mantle P.G. Development of alkaloid production in vitro by a strain of Claviceps purpurea from Spartina townsendii. Transactions of the British Mycological Society, 1969, 52(3): 381-392 (doi: 10.1016/S0007-1536(69)80122-1).
  • Strnadov6 K. UV-Mutanten bei Claviceps purpurea. Planta Medica, 1964, 12(4): 521-527 (doi: 10.1055/S-0028-1100208).
  • Kren V., Pazoutova S., Sedmera P., Rylko V., Rehacek Z. High-production mutant Claviceps purpurea 59 accumulating secoclavines. FEMS Microbiology Letters, 1986, 37(1): 31-34 (doi: 10.1111/j.1574-6968.1986.tb01761.x).
  • Smit R., Tudzynski P. Efficient transformation of Claviceps purpurea using pyrimidine auxotrophic mutants: cloning of the OMP decarboxylase gene. Molecular Genetics and Genomics, 1992, 234(2): 297-305 (doi: 10.1007/BF00283850).
  • Strnadova K. A method of preparation and application of nitrous acid as a mutagen in Claviceps purpurea. Folia Microbiologic, 1976, 21(6): 455-458 (doi: 10.1007/BF02876936).
  • Brauer K.L., Robbers J.E. Induced parasexual processes in Claviceps sp. strain SD58. Applied and Environmental Microbiology, 1987, 53(1): 70-73 (doi: 10.1128/aem.53.1.70-73.1987).
  • Davis K.A., Sampson J.K., Panaccione D.G. Genetic reprogramming of the ergot alkaloid pathway of Metarhizium brunneum. Applied and Environmental Microbiology, 2020, 86(19): e01251-20 (doi: 10.1128/AEM.01251-20).
  • Yu L., Xiao M., Zhu Z., Wang Y., Zhou Z., Wang P., Zou G. Efficient genome editing in Claviceps purpurea using a CRISPR/Cas9 ribonucleoprotein method. Synthetic and Systems Biotechnology, 2022, 7(2): 664-670 (doi: 10.1016/j.synbio.2022.02.002).
  • van Engelenburg F., Smit R., Goosen T, van den Broek H., Tudzynski P. Transformation of Claviceps purpurea using a bleomycin resistance gene. Applied Microbiology and Biotechnology, 1989, 30: 364-370 (doi: 10.1007/BF00296625).
  • Winston F., Dollard C., Ricupero-Hovasse S.L. Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast, 1995, 11(1): 53-55 (doi: 10.1002/yea.320110107).
  • Colot H.V., Park G., Turner G.E., Ringelberg C., Crew C.M., Litvinkova L., Weiss R.L., Borko-vich K.A., Dunlap J.C. A hight hroughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10352-10357 (doi: 10.1073/pnas.0601456103).
  • Kouprina N., Larionov V. Transformation-associated recombination (TAR) cloning for genomics studies and synthetic biology. Chromosoma, 2016, 125(4): 621-632 (doi: 10.1007/s00412-016-0588-3).
  • Crews C. Analysis of ergot alkaloids. Toxins (Basel), 2015, 7(6): 2024-2050 (doi: 10.3390/toxins7062024).
  • Schummer C., Brune L., Moris G. Development of a UHPLC-FLD method for the analysis of ergot alkaloids and application to different types of cereals from Luxembourg. Mycotoxin Research, 2018, 34(4): 279-287 (doi: 10.1007/s12550-018-0322-5).
  • Kuner M., Kühn S., Haase H., Meyer K., Koch M. Cleaving ergot alkaloids by hydrazinolysis — a promising approach for a sum parameter screening method. Toxins (Basel), 2021, 13(5): 342 (doi: 10.3390/toxins13050342).
  • Kodisch A., Oberforster M., Raditschnig A., Rodemann B., Tratwal A., Danielewicz J., Korbas M., Schmiedchen B., Eifler J., Gordillo A., Siekmann D., Fromme F.J., Wuppermann F.N., Wieser F., Zechner E., Niewi ska M., Miedaner T. Covariation of ergot severity and alkaloid content measured by HPLC and one ELISA Method in inoculated winter rye across three isolates and three European countries. Toxins, 2020, 12(11): 676 (doi: 10.3390/toxins12110676).
  • Franzmann C., Wächter J., Dittmer N., Humpf H.-U. Ricinoleic acid as a marker for ergot impurities in rye and rye products. Journal of Agricultural and Food Chemistry, 2010, 58(7): 42234229 (doi: 10.1021/jf1006903).
  • Appelt M., Ellner F.M. Investigations into the occurrence of alkaloids in ergot and single sclerotia from the 2007 and 2008 harvests. Mycotoxin Research, 2009, 25(2): 95-101 (doi: 10.1007/s12550-009-0014-2).
  • Miedaner T., Dänicke S., Schmiedchen B., Wilde P., Wortmann H., Dhillon B., Geiger H., Mirdita V. Genetic variation for ergot ( Claviceps purpurea) resistance and alkaloid concentrations in cytoplasmic-male sterile winter rye under pollen isolation. Euphytica, 2010, 173: 299-306 (doi: 10.1007/s10681-009-0083-5).
  • Aboling S., Drotleff A., Cappai M., Kamphues J. Contamination with ergot bodies (Claviceps purpurea sensu lato) of two horse pastures in Northern Germany. Mycotoxin Research 2016, 32(4): 207-219 (doi: 10.1007/s12550-016-0253-y).
  • Uhlig S., Vikmren T., Ivanova L., Handeland K. Ergot alkaloids in Norwegian wild grasses: A mass spectrometric approach. Rapid Communications in Mass Spectrometry, 2007, 21(10): 16511660 (doi: 10.1002/rcm.3005).
  • Dopstadt J., Vens-Cappell S., Neubauer L., Tudzynski P., Cramer B., Dreisewerd K., Humpf H.-U. Localization of ergot alkaloids in sclerotia of Claviceps purpurea by matrix-assisted laser desorp-tion/ionization mass spectrometry imaging. Analytical and Bioanalytical Chemistry, 2017, 409(5): 1221-1230 (doi: 10.1007/s00216-016-0047-2).
  • Tudzynski P., Correia T., Keller U. Biotechnology and genetics of ergot alkaloids. Applied Microbiology and Biotechnology, 2001, 57(5-6): 593-605 (doi: 10.1007/s002530100801).
  • Haarmann T., Machado C., Lübbe Y., Correia T., Schardl C.L., Panaccione D.G., Tudzynski P. The ergot alkaloid gene cluster in Claviceps purpurea: extension of the cluster sequence and intra species evolution. Phytochemistry, 2005, 66(11): 1312-1320 (doi: 10.1016/j.phytochem.2005.04.011).
  • Ryan K.L., Akhmedov N.G., Panaccione D.G. Identification and structural elucidation of er-gotryptamine, a new ergot alkaloid produced by genetically modified Äspergillus nidulans and natural isolates of Epichloe species. Journal of Agricultural and Food Chemistry, 2015, 63(1): 6167 (doi: 10.1021/jf505718x).
  • Steen C.R., Sampson J.K., Panaccione D.G. A Baeyer-Villiger monooxygenase gene involved in the synthesis of lysergic acid amides affects the interaction of the fungus Metarhizium brunneum with insects. Applied and Environmental Microbiology, 2021, 87(17): e0074821 (doi: 10.1128/AEM.00748-21).
  • Lorenz N., Wilson E.V., Machado C., Schardl C.L., Tudzynski P. Comparison of ergot alkaloid biosynthesis gene clusters in Claviceps Species indicates loss of late pathway steps in evolution of C. fusiformis. Applied and Environmental Microbiology, 2007, 73(22): 7185-7191 (doi: 10.1128/AEM.01040-07).
  • Coyle C.M., Panaccione D.G. An ergot alkaloid biosynthesis gene and clustered hypothetical genes from Aspergillus fumigatus. Applied and Environmental Microbiology, 2005, 71(6): 3112-3118 (doi: 10.1128/aem.71.6.3112-3118.2005).
  • Coyle C.M., Cheng J.Z., O'Connor S.E., Panaccione D.G. An old yellow enzyme gene controls the branch point between Aspergillus fumigatus and Claviceps purpurea ergot alkaloid pathways. Applied and Environmental Microbiology, 2010, 76(12): 3898-3903 (doi: 10.1128/AEM.02914-09).
  • Liu M., Panaccione D.G., Schardl C.L. Phylogenetic analyses reveal monophyletic origin of the ergot alkaloid gene dmaW in fungi. Evolutionary Bioinformatics, 2009, 5: 15-30 (doi: 10.4137/ebo.s2633).
  • Goetz K.E., Coyle C.M., Cheng J.Z., O"Connor S.E., Panaccione D.G. Ergot cluster-encoded catalase is required for synthesis of chanoclavine-I in Aspergillus fumigatus. Current Genetics, 2011, 57(3): 201-211 (doi: 10.1007/s00294-011-0336-4).
  • Jones A.M., Steen C.R., Panaccione D.G. Independent evolution of a lysergic acid amide in Äspergillus species. Applied and Environmental Microbiology, 2021, 87(24): e01801-21 (doi: 10.1128/AEM.01801-21).
  • Nielsen C.A., Folly C., Hatsch A., Molt A., Schröder H., O'Connor S.E., Naesby M. The important ergot alkaloid intermediate chanoclavine-I produced in the yeast Saccharomyces cerevisiae by the combined action of EasC and EasE from Aspergillus japonicus. Microbial Cell Factories, 2014, 13(1): 95 (doi: 10.1186/s12934-014-0095-2).
  • An C., Zhu F., Yao Y., Zhang K., Wang W., Zhang J., Wei G., Xia Y., Gao Q., Gao S. Beyond the cyclopropyl ring formation: fungal Aj_EasH catalyzes asymmetric hydroxylation of ergot alkaloids. Applied Microbiology and Biotechnology, 2022, 106(8): 2981-2991 (doi: 10.1007/s00253-022-11892-4).
  • Jakubczyk D., Cheng J.Z., O'Connor S.E. Biosynthesis of the ergot alkaloids. Natural Product Reports, 2014, 31(10): 1328-1338 (doi: 10.1039/C4NP00062E).
  • Wallwey C., Heddergott C., Xie X., Brakhage A.A., Li S. Genome mining reveals the presence of a conserved gene cluster for the biosynthesis of ergot alkaloid precursors in the fungal family Arthro-dermataceae. Microbiology (Reading), 2012, 158(Pt 6): 1634-1644 (doi: 10.1099/mic.0.056796-0).
  • Fabian S.J., Maust M.D., Panaccione D.G. Ergot alkaloid synthetic capacity of Penicillium cam-emberti. Applied and Environmental Microbiology, 2018, 84(191): e01583-18 (doi: 10.1128/AEM.01583-18).
  • Pertz H., Eich E. Ergot alkaloids and their derivatives as ligands for serotoninergic, dopaminergic, and adrenergic receptors. In: Ergot: the genus Claviceps /V. Kren, L. Cvak (eds.). Amsterdam, Harwood Academic Publishers, 1999: 411-440.
  • Mantegani S., Brambilla E., Varasi M. Ergoline derivatives: receptor affinity and selectivity. Farmaco, 1999, 54(5): 288-296 (doi: 10.1016/s0014-827x(99)00028-2).
  • Negerd M., Uhlig S., Kauserud H., Andersen T., H0iland K., Vrelstad T. Links between Genetic Groups, Indole alkaloid profiles and ecology within the grass-parasitic Claviceps purpurea species complex. Toxins, 2015, 7(5): 1431-1456 (doi: 10.3390/toxins7051431).
  • Uhlig S., Petersen D. Lactam ergot alkaloids (ergopeptams) as predominant alkaloids in sclerotia of Claviceps purpurea from Norwegian wild grasses. Toxicon, 2008, 52(1): 175-185 (doi: 10.1016/j.toxicon.2008.05.002).
  • Cheng J.Z., Coyle C.M., Panaccione D.G., O'Connor S.E. Controlling a structural branch point in ergot alkaloid biosynthesis. Journal of the American Chemical Society, 2010, 132(37): 1283512837 (doi: 10.1021/ja105785p).
  • Wei X., Wang W.G., Matsuda Y. Branching and converging pathways in fungal natural product biosynthesis. Fungal Biology and Biotechnology, 2022, 9: 6 (doi: 10.1186/s40694-022-00135-w).
  • Jakubczyk D., Caputi L., Hatsch A., Nielsen C.A.F., Diefenbacher M., Klein J., Molt A., Schröder H., Cheng J.Z., Naesby M., O'Connor S.E. Discovery and reconstitution of the cycloclavine biosynthetic pathway-enzymatic formation of a cyclopropyl group. Angewandte Chemie International Edition, 2015, 54(17): 5117-5121 (doi: 10.1002/anie.201410002).
  • Hütter R., DeMoss J.A. Organization of the tryptophan pathway: a phylogenetic study of the fungi. Journal of Bacteriology, 1967, 94(6): 1896-1907 (doi: 10.1128/JB.94.6.1896-1907.1967).
  • Hütter R., Niederberger P., DeMoss J.A. Tryptophan biosynthetic genes in eukaryotic microorganisms. Annual Review of Microbiology, 1986, 40: 55-77 (doi: 10.1146/annurev.mi.40.100186.000415).
  • Crawford I.P., Eberly L. Structure and regulation of the anthranilate synthase genes in Pseudomonas aeruginosa: I. Sequence of trpG encoding the glutamine amidotransferase subunit. Molecular Biology and Evolution, 1986, 3(5): 436-448 (doi: 10.1093/oxfordjournals.molbev.a040408).
  • Metzger U., Schall C., Zocher G., Unsöld I., Stec E., Li S.M., Heide L., Stehle T. The structure of dimethylallyl tryptophan synthase reveals a common architecture of aromatic prenyltransferases in fungi and bacteria. Proceedings of the National Academy of Sciences, 2009, 106(34): 1430914314 (doi: 10.1073/pnas.0904897106).
  • Ruijter G.J., Visser J. Carbon repression in Aspergilli. FEMS Microbiology Letters, 1997, 151(2): 103-114 (doi: 10.1111/j. 1574-6968.1997.tb12557).
  • Arst H.N., Cove D.J. Nitrogen metabolite repression in Aspergillus nidulans. Molecular Genetics and Genomics, 1973, 126: 111-141 (doi: 10.1007/BF00330988).
  • Bignell E., Negrete-Urtasun S., Calcagno A.M., Haynes K., Arst Jr H.N., Rogers T. The Aspergillus pH-responsive transcription factor PacC regulates virulence. Molecular Microbiology, 2005, 55(4): 1072-1084 (doi: 10.1111/j.1365-2958.2004.04472.x).
  • Kang S., Metzenberg R.L. Molecular analysis of nuc-1+, a gene controlling phosphorus acquisition in Neurospora crassa. Molecular and Cellular Biology, 1990, 10(11): 5839-5848 (doi: 10.1128/MCB.10.11.5839).
  • Otsuka H., Quigley F.R., Gryger J., Anderson A., Floss H.G. In vivo and in vitro evidence for N-methylation as the pathway specific step in ergoline biosynthesis. Planta Medica, 1980, 40(10): 109-119 (doi: 10.1055/s-2008-1074947).
  • Yao Y., An C., Evans D., Liu W., Wang W., Wei G., Ding N., Houk K.N., Gao S. Catalase involved in oxidative cyclization of the tetracyclic ergoline of fungal ergot alkaloids. Journal of the American Chemical Society, 2019, 141(44): 17517-17521 (doi: 10.1021/jacs.9b10217).
  • Wallwey C., Matuschek M., Li S. Ergot alkaloid biosynthesis in Aspergillus fumigatus: conversion of chanoclavine-I to chanoclavine-I aldehyde catalyzed by a short-chain alcohol dehydrogenase FgaDH. Archives of Microbiology, 2010, 192(2): 127-134 (doi: 10.1007/s00203-009-0536-1).
  • Arnold S.L., Panaccione D.G. Biosynthesis of the pharmaceutical^ important fungal ergot alkaloid dihydrolysergic acid requires a specialized allele of cloA. Applied and Environmental Microbiology, 2017, 83(14): e00805-17 (doi: 10.1128/AEM.00805-17).
  • Robinson S.L., Panaccione D.G. Heterologous expression of lysergic acid and novel ergot alkaloids in Aspergillus fumigatus. Applied and Environmental Microbiology, 2014, 80(20): 6465-6472 (doi: 10.1128/AEM.02137-14).
  • Haarmann T., Ortel I., Tudzynski P., Keller U. Identification of the cytochrome P450 monoox-ygenase that bridges the clavine and ergoline alkaloid pathways. ChemBiochem, 2006, 7(4): 645652 (doi: 10.1002/cbic.200500487).
  • Riederer B., Han M., Keller U. D-Lysergyl peptide synthetase from the ergot fungus Claviceps purpurea. Journal of Biological Chemistry, 1996, 271(44): 27524-27530 (doi: 10.1074/jbc.271.44.27524).
  • Walzel B., Riederer B., Keller U. Mechanism of alkaloid cyclopeptide synthesis in the ergot fungus Claviceps purpurea. Chemistry & Biology, 1997, 4(3): 223-230 (doi: 10.1016/s1074-5521(97)90292-1).
  • Haarmann T., Lorenz N., Tudzynski P. Use of a nonhomologous end joining deficient strain (Aku70) of the ergot fungus Claviceps purpurea for identification of a nonribosomal peptide synthetase gene involved in ergotamine biosynthesis. Fungal Genetics and Biology, 2008, 45(1): 35-44 (doi: 10.1016/j.fgb.2007.04.008).
  • Ortel I., Keller U. Combinatorial assembly of simple and complex D-lysergic acid alkaloid peptide classes in the ergot fungus Claviceps purpurea. Journal of Biological Chemistry, 2009, 284(11): 6650-6660 (doi: 10.1074/jbc.M807168200).
  • Havemann J., Vogel D., Loll B., Keller U. Cyclolization of D-lysergic acid alkaloid peptides. Chemistry & Biology, 2014, 21(1): 146-155 (doi: 10.1016/j.chembiol.2013.11.008).
  • Berry D., Mace W., Grage K., Wesche F., Gore S., Schardl C.L., Young C.A., Dijkwel P.P., Leuchtmann A., Bode H.B., Barry S. Efficient nonenzymatic cyclization and domain shuffling drive pyrrolopyrazine diversity from truncated variants of a fungal NRPS. Proceedings of the National Academy of Sciences, 2019, 116(51): 25614-25623 (doi: 10.1073/pnas.1913080116).
  • Baunach M., Chowdhurry S., Stallforth P., Dittmann E. The landscape of recombination events that create nonribosomal peptide diversity. Molecular Biology and Evolution, 2021, 38(5): 21162130 (doi: 10.1093/molbev/msab015).
  • Wang P., Choera T., Wiemann P., Pisithkul T., Amador-Noguez D., Keller N.P. TrpE feedback mutants reveal roadblocks and conduits toward increasing secondary metabolism in Aspergillus fumigatus. Fungal Genetics and Biology, 2016, 89: 102-113 (doi: 10.1016/j.fgb.2015.12.002).
  • Ryan K.L., Moore C.T., Panaccione D.G. Partial reconstruction of the ergot alkaloid pathway by heterologous gene expression in Aspergillus nidulans. Toxins (Basel), 2013, 5(2): 445-455 (doi: 10.3390/toxins5020445).
  • Tudzynski P., Scheffer J. Claviceps purpurea: molecular aspects of a unique pathogenic lifestyle. Molecular Plant Pathology, 2004, 5(5): 377-388 (doi: 10.1111/j.1364-3703.2004.00237.x).
  • Kodisch A., Wilde P., Schmiedchen B., Fromme F.-J., Rodemann B., Tratwal A., Oberforster M., Schiemann A., Jmrgensen L., Miedaner T. Ergot infection in winter rye hybrids shows differential contribution of male and female genotypes and environment. Euphytica, 2020, 216(4): 65 (doi: 10.1007/s10681-020-02600-2).
  • Pageau D., Wauthy J., Collin J. Evaluation of barley cultivars for resistance to ergot fungus, Claviceps purpurea (Fr.) Tul. Canadian Journal of Plant Science, 1994, 74(3): 663-665 (doi: 10.4141/cjps94-118).
  • Mette M.F., Gils M., Longin C.F.H., Reif J.C. Hybrid breeding in wheat. In: Advances in wheat genetics: from genome to field /Y. Ogihara, S. Takumi, H. Handa (eds.). Springer, Tokyo, 2015: 225-232 (doi: 10.1007/978-4-431-55675-6_24).
  • Platford R.G., Bernier C.C. Resistance to Claviceps purpurea in spring and durum wheat. Nature, 1970, 226(5247): 770 (doi: 10.1038/226770a0).
  • Gordon A., McCartney C., Knox R.E., Ereful N., Hiebert C.W., Konkin D.J., Hsueh Ya.-C., Bhadauria V., Sgroi M., O'Sullivan D.M., Hadley C., Boyd L.A., Menzies J.G. Genetic and transcriptional dissection of resistance to Claviceps purpurea in the durum wheat cultivar Green-shank. Theoretical and Applied Genetics, 2020, 133: 1873-1886 (doi: 10.1007/s00122-020-03561-9).
  • Thakur R.P., Rai K.N. Pearl millet ergot research: advances and implications. In: Sorghum and millets diseases /J.F. Leslie (ed.). Iowa State Press, Ames, IA, USA, 2003: 57-64 (doi: 10.1002/9780470384923.ch9).
  • Pazoutova S., Frederickson D.E. Genetic diversity of Claviceps africana on sorghum and Hypar-rhenia. Plant Pathology, 2005, 54: 749-763 (doi: 10.1111/j.1365-3059.2005.01255.x).
  • Haarmann T., Rolke Y., Giesbert S., Tudzynski P. Ergot: from witchcraft to biotechnology. Molecular Plant Pathology, 2009, 10(4): 563-577 (doi: 10.1111/j.1364-3703.2009.00548.x).
  • Wäli P.P., Wäli P.R., Saikkonen K., Tuomi J. Is the pathogenic ergot fungus a conditional defensive mutualist for its host grass? PLoS ONE, 2013, 8(7): e69249 (doi: 10.1371/journal.pone.0069249).
  • Menzies J.G., Klein-Gebbinck H.W., Gordon A., O'Sullivan D.M. Evaluation of Claviceps purpurea isolates on wheat reveals complex virulence and host susceptibility relationships. Canadian Journal of Plant Pathology, 2017, 39(3): 307-317 (doi: 10.1080/07060661.2017.1355334).
  • Platford R.G., Bernier C.C. Reaction of cultivated cereals to Claviceps purpurea. Canadian Journal of Plant Science, 1976, 56: 51-58 (doi: 10.4141/cjps76-009).
  • Cooke R.C., Mitchell D.T. Sclerotium size and germination in Claviceps purpurea. Transactions of the British Mycological Society, 1966, 49(1): 95-100 (doi: 10.1016/S0007-1536(66)80039-6).
  • Likar M., Grandi M., Strajn B.J., Kos K., Celar F.A. Links between genetic groups, host specificity, and ergot-alkaloid profiles within Claviceps purpurea (Fr.) Tul. on Slovenian grasses. Plant Disease, 2018, 102(7): 1334-1340 (doi: 10.1094/pdis-08-17-1179-re).
  • Pazoutova S., Cagas B., Kolinska R., Honzatko A. Host specialization of different 424 populations of ergot fungus (Claviceps purpurea). Czech Journal of Genetics and Plant Breeding, 2002, 38(2): 75-81.
  • Pazoutova S. The evolutionary strategy of Claviceps. In: Clavicipitalean fungi: evolutionary biology, chemistry, biocontrol and cultural impacts /F. White, C.W. Bacon, N.L. Hywel-Jones (eds.). Marcel Dekker, New York, 2002: 329-354.
  • Dung J.K.S., Alderman S.C., Walenta D.L., Hamm P.B. Spatial patterns of ergot and quantification of sclerotia in perennial ryegrass seed fields in eastern Oregon. Plant Disease, 2016, 100(6): 1110-1117 (doi: 10.1094/PDIS-08-14-0787-RE).
  • Dung J.K., Scott J., Cheng Q., Alderman S.C., Kaur N., Walenta D.L., Frost K.E., Hamm P.B. Detection and quantification of airborne Claviceps purpurea sensu lato ascospores from hirst-type spore traps using real-time quantitative PCR. Plant Disease, 2018, 102(12): 2487-2493 (doi: 10.1094/PDIS-02-18-0310-RE).
  • Butler M.D., Alderman S.C., Hammond P.C., Berry R.E. Association of insects and ergot (Claviceps purpurea) in Kentucky bluegrass seed production fields. Journal of Economic Entomology, 2001, 94(6): 1471-1476 (doi: 10.1603/0022-0493-94.6.1471).
  • Kaur N., Cating R.A., Rondon S.I., Scott J.C., Alderman S.C., Walenta D.L., Frost K.E., Hamm P.B., Dung J.K.S. Dispersal potential of ergot spores by insects foraging in perennial ryegrass fields in the Columbia Basin of Oregon and Washington. Crop, Forage & Turfgrass Management, 2019, 5(1): 1-5 (doi: 10.2134/cftm2019.04.0020).
  • Alderman S.C., Halse R.R., White J.F. A reevaluation of the host range and geographical distribution of Claviceps species in the United States. Plant Disease, 2004, 88(1): 63-81 (doi: 10.1094/PDIS.2004.88.1.63).
  • Шаин С.С. Биологические основы производства сырья спорыньи (Claviceps purpurea (Fr.) Tul.) в биотехнологической системе гриб—растение ^бзор). Прикладная биохимия и микробиология, 1996, 32(3): 275-279.
  • Hanosova H., Koprna R., Valik J., Knoppova L., Frébort I., Dzurova L., Galuszka P. Improving field production of ergot alkaloids by application of gametocide on rye host plants. New Biotechnology, 2015, 32(6): 739-746 (doi: 10.1016/j.nbt.2015.01.008).
  • Menzies J.G. The reactions of Canadian spring wheat genotypes to inoculation with Claviceps purpurea, the causal agent of ergot. Canadian Journal of Plant Science, 2004, 84(4): 625-629 (doi: 10.4141/P03-086).
  • Gordon A., Basler R., Bansept-Basler P., Fanstone V., Harinarayan L., Grant P.K., Birch-more R., Bayles R.A., Boyd L.A., O'Sullivan D.M. The identification of QTL controlling ergot sclerotia size in hexaploid wheat implicates a role for the Rht dwarfing alleles. Theoretical and Applied Genetics, 2015, 128: 2447-2460 (doi: 10.1007/s00122-015-2599-5).
  • Platford R.G., Bernier C.C., Evans L.E. Chromosome location of genes conditioning resistance to Claviceps purpurea in spring and durum wheat. Canadian Journal of Genetics and Cytology, 1977, 19: 679-682 (doi: 10.1139/g77-074).
  • Komolong B., Chakraborty S., Ryley M., Yates D. Ovary colonization by Claviceps africana is related to ergot resistance in male-sterile sorghum lines. Plant Pathology, 2003, 52(5): 620-627 (doi: 10.1046/j.1365-3059.2003.00886.x).
  • Parh D.K., Jordan D.R., Aitken E.A., Mace E.S., Jun-ai P., McIntyre C.L., Godwin I.D. QTL analysis of ergot resistance in sorghum. Theoretical and Applied Genetics, 2008, 117(3): 369-382 (doi: 10.1007/s00122-008-0781-8).
  • Tente E., Carrera E., Gordon A., Boyd L.A. The role of the wheat reduced height (Rht)-DELLA mutants and associated hormones in infection by Claviceps purpurea, the causal agent of ergot. Phytopathology, 2022, 112(4): 842-851 (doi: 10.1094/PHYT0-05-21-0189-R).
  • Kind S., Schurack S., Hinsch J., Tudzynski P. Brachypodium distachyon as alternative model host system for the ergot fungus Claviceps purpurea. Molecular Plant Pathology, 2017, 19(4): 1005-1011 (doi: 10.1111/mpp.12563).
  • Kind S., Hinsch J., Vrabka J., Hradilova M., Majeska-Cudejkova M., Tudzynski P., Galuszka P. Manipulation of cytokinin level in the ergot fungus Claviceps purpurea emphasizes its contribution to virulence. Current Genetics, 2018, 64(6): 1303-1319 (doi: 10.1007/s00294-018-0847-3).
  • Mirdita V., Dhillon B., Geiger H., Miedaner T. Genetic variation for resistance to ergot (Claviceps purpurea [Fr.] Tul.) among full-sib families of five populations of winter rye (Secale cereale L.). Theoretical and Applied Genetics, 2008, 118(1): 85-90 (doi: 10.1007/s00122-008-0878-0).
  • Mirdita V., Miedaner T. Resistance to ergot in self-incompatible germplasm resources of winter rye. Journal of Phytopathology, 2009, 157(6): 350-355 (doi: 10.1111/j.1439-0434.2008.01499.x).
  • Mahmood K., Orabi J., Kristensen P.S., Sarup P., Jmrgensen L.N., Jahoor A. De novo tran-scriptome assembly, functional annotation, and expression profiling of rye (Secale cereale L.) hybrids inoculated with ergot (Claviceps purpurea). Scientific Reports, 2020, 10(1): 13475 (doi: 10.1038/s41598-020-70406-2).
  • Oeser B., Heidrich P.M., Müller U., Tudzynski P., Tenberge K.B. Polygalacturonase is a pathogenicity factor in the Claviceps purpurea/rye interaction. Fungal Genetics and Biology, 2002, 36(3): 176-186 (doi: 10.1016/S1087-1845(02)00020-8).
  • Wang Z., Wan L., Zhang X., Xin Q., Song Y., Hong D., Sun Y., Yang G. Interaction between Brassica napus polygalacturonase inhibition proteins and Sclerotinia sclerotiorum polygalacturonase: implications for rapeseed resistance to fungal infection. Planta, 2021, 253(2): 34 (doi: 10.1007/s00425-020-03556-2).
  • Volpi C., Raiola A., Janni M., Gordon A., O'Sullivan D.M., Favaron F., D'Ovidio R. Claviceps purpurea expressing polygalacturonases escaping PGIP inhibition fully infects PvPGIP2 wheat transgenic plants but its infection is delayed in wheat transgenic plants with increased level of pectin methyl esterification. Plant Physiology and Biochemistry, 2013, 73: 294-301 (doi: 10.1016/j.plaphy.2013.10.011).
Еще
Статья обзорная