Разнообразие культивируемых бактерий-деструкторов монохлорированных бифенилов в почвах охраняемого ландшафта

Автор: Королев Н.А., Кирьянова Т.Д., Егорова Д.О.

Журнал: Вестник Пермского университета. Серия: Биология @vestnik-psu-bio

Рубрика: Микробиология

Статья в выпуске: 3, 2024 года.

Бесплатный доступ

В работе использованы аэробные бактериальные штаммы из рабочей коллекции лаборатории микробиологии техногенных экосистем «ИЭГМ УрО РАН», выделенные ранее из почв охраняемого ландшафта ООПТ Осинская лесная дача. Наибольший деструктивный потенциал в отношении бифенила и его хлорированных производных выявлен у 16 штаммов. На основании анализа нуклеотидной последовательности гена 16S рРНК установлена филогенетическая принадлежность данных штаммов. Показано, что доля представителей рода Achromobacter составила 56.25%, Rhodococcus - 18.75%, Pseudomonas - 12.5%, Delftia и Stenotrophomonas - по 6.25%. Штаммы родов Achromobacter и Rhodococcus осуществляли деструкцию 2-хлор-, 3-хлор- и 4-хлорированных бифенилов с эффективностью 13-100% и 43-100% соответственно. Эффективность деструкции монохлорбифенилов для представителей рода Pseudomonas составляла выше 80%, за исключением 69%-го разложения 4-хлорбифенила штаммом Pseudomonas sp. Osa 27. Штамм Stenotrophomonas sp. Osa 13 наиболее активно (71%) разлагал 4-хлорбифенил, но проявлял наименьшую активность (34%) в отношении 3-хлорированного бифенила. Штамм Delftia sp. Osa 20 осуществлял полную деструкцию 3-хлор- и 4-хлорбифенилов, но не осуществлял трансформацию 2-хлорбифенила. Таким образом, аэробные бактериальные культуры, выделенные из почв охраняемого ландшафта, обладают способностью окислять сложные ароматические соединения, опасные для окружающей среды.

Еще

Монохлорированные бифенилы, achromobacter, rhodococcus, pseudomonas, stenotrophomonas, delftia, биодеструкция

Короткий адрес: https://sciup.org/147246119

IDR: 147246119   |   DOI: 10.17072/1994-9952-2024-3-285-299

Список литературы Разнообразие культивируемых бактерий-деструкторов монохлорированных бифенилов в почвах охраняемого ландшафта

  • Бузмаков С.А., Гатина Е.Л. Зонирование особо охраняемой природной территории «Осинская лесная дача» // Географический вестник. 2009. № 1. С. 51-55. https://cyberleninka.ru/article/n/zonirovanie-osobo-ohranyaemoy-prirodnoy-territorii-osinskaya-lesnaya-dacha (дата обращения: 21.06.2024).
  • Егорова Д.О. и др. Биоремедиация почвы, длительное время загрязненной дихлордифенилтрихлор-этаном, с использованием аэробного штамма Rhodococcus wratislaviensis CH628 // Почвоведение. 2017. № 10. С. 1262-1269. https://doi.org/10.7868/S0032180X1710001X.
  • Егорова Д.О. и др. Особенности разложения хлорированных бифенилов штаммом Rhodococcus wratislaviensis КТ112-7 в условиях засоления // Прикладная биохимия и микробиология. 2018. Т. 54, № 3. С. 253-263. https://doi.org/10.7868/S0555109918030042.
  • Плотникова Е.Г. др. Особенности разложения 4-хлорбифенила и 4-хлорбензойной кислоты штаммом Rhodococcus ruber P25 // Микробиология. 2012. Т. 81, № 2. С. 159-170. https://doi.org/10.1134/S0026261712020117.
  • Трегер Ю. СОЗ - стойкие и очень опасные // The Chemical Journal. 2013. № 1. P. 30-34. https://tcj.ru/journal/jan-fev-2013.
  • Adams C.I.M. et al. Toxicological effects of polychlorinated biphenyls (PCBs) on freshwater turtles in the United States // Chemosphere. 2016. Vol. 154. P. 148-154. https://doi.org/10.1016/j.chemosphere.2016.03.102.
  • Adebusoye S.A. et al. Characterization of multiple novel aerobic polychlorinated biphenyl (PCB)-utilizing bacterial strains indigenous to contaminated tropical African soils // Biodegradation. 2008. Vol. 19, № 1. P. 145159. https://doi.org/10.1007/s10532-007-9122-x.
  • Atago Y. et al. Identification of novel extracellular protein for PCB/biphenyl metabolism in Rhodococcus jostii RHA1 // Bioscience, Biotechnology, and Biochemistry. 2016. Vol. 80, № 5. P. 1012-1019. https://doi.org/10.1080/09168451.2015.1127134.
  • Bako C.M. et al. Biodegradation of PCB congeners by Paraburkholderia xenovorans LB400 in presence and absence of sediment during lab bioreactor experiments // Environmental Pollution. 2021. Vol. 271. Article 116364. https://doi.org/10.1016/j.envpol.2020.116364.
  • Bhattacharya A., Khare S.K. Biodegradation of 4-chlorobiphenyl by using induced cells and cell extract of Burkholderia xenovorans // Bioremediation Journal. 2017. Vol. 21. P. 109-118. https://doi.org/10.1080/10889868.2017.1282940.
  • Cao Y.M. et al. Analysis of PCBs degradation abilities of biphenyl dioxygenase derived from Enterobacter sp. LY402 by molecular simulation // New Biotechnology. 2011. Vol. 29, № 1. P. 90-98. https://doi.org/10.1016/j.nbt.2011.08.005.
  • Colbert C.L. et al. Structural characterization of Pandoraea pnomenusa B-356 biphenyl dioxygenase reveals features of potent polychlorinated biphenyl-degrading enzymes // PLoS One. 2013. Vol. 8, № 1. Article e52550. https://doi.org/10.1371/journal.pone.0052550.
  • Devi N.L. Persistent Organic Pollutants (POPs): Environmental risks, toxicological effects, and bioremediation for Environmental Safety and Challenges for Future Research // Bioremediation of Industrial Waste for Environmental Safety / G. Saxena, R. Bharagava, eds. Singapore: Springer, 2020. Р. 53-76. https://doi.org/10.1007/978-981-13-1891-7_4.
  • Egorova D.O. et al. Biodegradability of hydroxylated derivatives of commercial polychlorobiphenyls mixtures by Rhodococcus-strains // Journal of Hazardous Materials. 2020. Vol. 400. Article 123328. https://doi.org/10.1016/j.jhazmat.2020.123328.
  • Final act of the Conference of Plenipotentiaries on the Stockholm, 22-23 May // UNEP / POPS/CONF/4. United Nations Environment Programme. Geneva, 2001. 44 p.
  • Flavia A. et al. Degradation of atrazine by Pseudomonas sp. and Achromobacter sp. isolated from Brazilian agricultural soil // International Biodeterioration and Biodegradation. 2018. Vol. 130. P. 17-22. https://doi.org/10.1016/j.ibiod.2018.03.011.
  • Furukawa K. Biochemical and genetic bases of microbial degradation of polychlorinated biphenyls (PCBs) // The Journal of General and Applied Microbiology. 2000. Vol. 46, № 6. P. 283-296. https://doi.org/10.2323/jgam.46.283.
  • Hara T., Takatsuka Y. Aerobic polychlorinated biphenyl-degrading bacteria isolated from the Tohoku region of Japan are not regionally endemic // Canadian Journal of Microbiology. 2022. Vol. 68, № 3. P. 191-202. doi: 10.1139/cjm-2021-0056.
  • Hatamian-Zarmi A. et al. Extensive biodegradation of highly chlorinated biphenyl and Aroclor 1242 by Pseudomonas aeruginosa TMU56 isolated from contaminated soils // International Biodeterioration and Biodegradation. 2009. Vol. 63, № 6. P. 788-794. https://doi.org/10.1016/j.ibiod.2009.06.009.
  • Hernandez B.S. et al. Terpene-utilizing isolates and their relevance to enhanced biotransformation of polychlorinated biphenyls in soil // Biodegradation. 1997. Vol. 8, № 3. P. 153-158. https://doi.org/10.1023/A:1008255218432.
  • Hong Q. et al. Isolation of a biphenyl-degrading bacterium, Achromobacter sp. BP3, and cloning of the bph gene cluster // International Biodeterioration and Biodegradation. 2009. Vol. 63, № 4. P. 365-370. https://doi.org/10.1016/j.ibiod.2008.10.009.
  • Hou L.H. et al. Phylogenetic characterization of several para- and meta-PCB dechlorinating Clostridium species: 16s rDNA sequence analyses // Letters in Applied Microbiology. 2000. Vol. 30, № 3. P. 238-243. https://doi.org/10.1046/j.1472-765x.2000.00709.x.
  • Hu J. et al. Sphingobium fuliginis HC3: a novel and robust isolated biphenyl-and polychlorinated biphen-yls-degrading bacterium without dead-end intermediates accumulation // PloS one. 2015. Vol. 10, № 4. Article e0122740. https://doi.org/10.1371/journal.pone.0122740.
  • Ilori M.O. et al. Aerobic mineralization of 4,4'-dichlorobiphqnyl and 4-chlorobenzoic acid by a novel natural bacterial strain that grows poorly on benzoate and biphenyl // World J. Microbiol. Biotechnol. 2008a. Vol. 24. P. 1259-1265. https://doi.org/10.1007\s11274-007-9597-y
  • Ilori M.O. et al. Degradation and mineralization of 2-chloro-, 3-chloro-and 4-chlorobiphenylby a newly characterized natural bacterial strain isolated from an electrical transformer fluid-contaminated soil // Journal of Environmental Sciences. 2008b. Vol. 20, № 10. P. 1250-1257. https://doi.org/10.1016/s1001-0742(08)62217-2.
  • Ilori M.O. et al. Catabolic plasmid specifying polychlorinated biphenyl degradation in Cupriavidus sp. strain SK-4: Mobilization and expression in a pseudomonad // Journal of Basic Microbiology. 2015. Vol. 55, № 3. P. 338-345. https://doi.org/10.1002/jobm.201200807.
  • Jia L.Y. et al. Isolation and characterization of comprehensive polychlorinated biphenyl degrading bacterium, Enterobacter sp. LY402 // J. Microbiol. Biotechnol. 2008. Vol. 18, № 5. P. 952-957. PMID: 18633297.
  • Kim S., Picardal F.W. A novel bacterium that utilizes monochlorobiphenyls and 4-chlorobenzoate as growth substrates // FEMS Microbiology Letters. 2000. Vol. 185, № 2. P. 225-229. https://doi.org/10.1111/j.1574-6968.2000.tb09066.x.
  • Kour D. et al. Gene manipulation and regulation of catabolic genes for biodegradation of biphenyl compounds // In New and Future Developments in Microbial Biotechnology and Bioengineering. 2019. P. 1-23. https://doi.org/10.1016/B978-0-444-63503-7.00001-2.
  • Liang Y. et al. Potential for polychlorinated biphenyl biodegradation in sediments from Indiana Harbor and Ship Canal // International Biodeterioration and Biodegradation. 2014. Vol. 89. P. 50-57. https://doi.org/10.1016/j.ibiod.2014.01.005.
  • Masai E. et al. Characterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1 // Appl. Environ. Microbiol. 1995. Vol. 61, № 6. P. 2079-2085. https://doi.org/10.1128/aem.61.6.2079-2085.1995.
  • Müller M.H.B. et al. Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in human breast milk and associated health risks to nursing infants in Northern Tanzania // Environmental research. 2017. Vol. 154. P. 425-434. https://doi.org/10.1016/j.envres.2017.01.031.
  • Nam I.H. et al. Biodegradation of biphenyl and 2-chlorobiphenyl by a Pseudomonas sp. KM-04 isolated from PCBs-contaminated coal mine soil /// Bulletin of Environmental Contamination and Toxicology. 2014. Vol. 93, № 1. P. 89-94. https://doi.org/10.1007/s00128-014-1286-6.
  • Negret-Bolagay D. et al. Persistent organic pollutants: the trade-off between potential risks and sustainable remediation methods // Journal of environmental Management. 2021. Vol. 300. Article 113737. https://doi.org/10.1016/j.jenvman.2021.113737.
  • Park S.H. et al. Adaptive and cross-protective responses of Pseudomonas sp. DJ-12 to several aro-matics and other stress shocks // Current Microbiology. 2001. Vol. 43, № 3. P. 176-181. https://doi.org/10.1007/s002840010283.
  • Pieper D.H., Seeger M. Bacterial metabolism of polychlorinated biphenyls // Journal of Molecular Microbiology and Biotechnology. 2008. Vol. 15, № 2-3. P. 121-138. https://doi.org/10.1159/000121325.
  • Ponce B.L. et al. Antioxidant compounds improved PCB-degradation by Burkholderia xenovorans strain LB400 // Enzyme and Microbial Technology. 2011. Vol. 49, № 6-7. P. 509-516. https://doi.org/10.1016/j.enzmictec.2011.04.021.
  • Reddy A.V.B. et al. Polychlorinated biphenyls (PCBs) in the environment: recent updates on sampling, pretreatment, cleanup technologies and their analysis // Chemical Engineering Journal. 2019. Vol. 358. P. 1186-1207. https://doi.org/10.1016/j.cej.2018.09.205.
  • Sakai M. et al. 2-Hydroxypenta-2, 4-dienoate metabolic pathway genes in a strong polychlorinated biphenyl degrader, Rhodococcus sp. strain RHA1 // Appl. Environ. Microbiol. 2003. Vol. 69, № 1. P. 427433. https://doi.org/10.1128/AEM.69.L427-433.2003.
  • Shuai J. et al. Regional analysis of potential polychlorinated biphenyl degrading bacterial strains from China // Brazilian Journal of Microbiology. 2016. Vol. 47, № 3. P. 536-541. https://doi.org/10.1016/j.bjm.2014.12.001.
  • Somaraja P.K. et al. Molecular characterization of 2-chlorobiphenyl degrading Stenotrophomonas maltophilia GS-103 // Bulletin of Environmental Contamination and Toxicology. 2013. Vol. 91, № 2. P. 148-153. https://doi.org/10.1007/s00128-013-1044-1.
  • Tarlachkov S.V. et al. Draft genome sequence of glyphosate-degrading Achromobacter insolitus strain Kg 19 (VKM B-3295), isolated from agricultural soil // Microbiology Resource Announcements. 2020. Vol. 9, № 17. Article e00284-20. doi: 10.1128/MRA.00284-20.
  • Warenik-Bany M. et al. Impact of environmental pollution on PCDD/F and PCB bioaccumulation in game animals // Environmental Pollution. 2019. Vol. 255. Article 113159 https://doi.org/10.1016/j.envpol.2019.113159.
  • Witzig R. et al. Assessment of toluene/biphenyl dioxygenase gene diversity in benzene-polluted soils: links between benzene biodegradation and genes similar to those encoding isopropylbenzene dioxy-genases // Appl. Environ. Microbiol. 2006. Vol. 72, № 5. P. 3504-3514. https://doi.org/10.1128/AEM.72.5.3504-3514.2006.
  • Xing Z. et al. Degradation Mechanism of 4-Chlorobiphenyl by Consortium of Pseudomonas sp. Strain CB-3 and Comamonas sp. Strain CD-2 // Current Microbiology. 2020. Vol. 77. P. 15-23. https://doi.org/10.1007/s00284-019-01791-9A.
  • Xu L. et al. Congener selectivity during polychlorinated biphenyls degradation by Enterobacter sp. LY402 // Current Microbiology. 2011. Vol. 62, № 3. P. 784-789. https://doi.org/10.1007/s00284-010-9792-1.
  • Zhang P. et al. Distribution and transfer pattern of polychlorinated biphenyls (PCBs) among the selected environmental media of Ny-Alesund, the Arctic: as a case study // Marine Pollution Bulletin. 2014. Vol. 89, № 1-2. P. 267-275.
  • Zhu L. et al. Degradation mechanism of biphenyl and 4,4'-dichlorobiphenyl cis-dihydroxylation by non-heme 2,3 dioxygenases BphA: A QM/MM approach // Chemosphere. 2020. Vol. 247. Article125844. https://doi.org/10.1016/j.chemosphere.2020.125844.
Еще
Статья научная