Разнообразие культивируемых бактерий-деструкторов монохлорированных бифенилов в почвах охраняемого ландшафта
Автор: Королев Н.А., Кирьянова Т.Д., Егорова Д.О.
Журнал: Вестник Пермского университета. Серия: Биология @vestnik-psu-bio
Рубрика: Микробиология
Статья в выпуске: 3, 2024 года.
Бесплатный доступ
В работе использованы аэробные бактериальные штаммы из рабочей коллекции лаборатории микробиологии техногенных экосистем «ИЭГМ УрО РАН», выделенные ранее из почв охраняемого ландшафта ООПТ Осинская лесная дача. Наибольший деструктивный потенциал в отношении бифенила и его хлорированных производных выявлен у 16 штаммов. На основании анализа нуклеотидной последовательности гена 16S рРНК установлена филогенетическая принадлежность данных штаммов. Показано, что доля представителей рода Achromobacter составила 56.25%, Rhodococcus - 18.75%, Pseudomonas - 12.5%, Delftia и Stenotrophomonas - по 6.25%. Штаммы родов Achromobacter и Rhodococcus осуществляли деструкцию 2-хлор-, 3-хлор- и 4-хлорированных бифенилов с эффективностью 13-100% и 43-100% соответственно. Эффективность деструкции монохлорбифенилов для представителей рода Pseudomonas составляла выше 80%, за исключением 69%-го разложения 4-хлорбифенила штаммом Pseudomonas sp. Osa 27. Штамм Stenotrophomonas sp. Osa 13 наиболее активно (71%) разлагал 4-хлорбифенил, но проявлял наименьшую активность (34%) в отношении 3-хлорированного бифенила. Штамм Delftia sp. Osa 20 осуществлял полную деструкцию 3-хлор- и 4-хлорбифенилов, но не осуществлял трансформацию 2-хлорбифенила. Таким образом, аэробные бактериальные культуры, выделенные из почв охраняемого ландшафта, обладают способностью окислять сложные ароматические соединения, опасные для окружающей среды.
Монохлорированные бифенилы, achromobacter, rhodococcus, pseudomonas, stenotrophomonas, delftia, биодеструкция
Короткий адрес: https://sciup.org/147246119
IDR: 147246119 | DOI: 10.17072/1994-9952-2024-3-285-299
Список литературы Разнообразие культивируемых бактерий-деструкторов монохлорированных бифенилов в почвах охраняемого ландшафта
- Бузмаков С.А., Гатина Е.Л. Зонирование особо охраняемой природной территории «Осинская лесная дача» // Географический вестник. 2009. № 1. С. 51-55. https://cyberleninka.ru/article/n/zonirovanie-osobo-ohranyaemoy-prirodnoy-territorii-osinskaya-lesnaya-dacha (дата обращения: 21.06.2024).
- Егорова Д.О. и др. Биоремедиация почвы, длительное время загрязненной дихлордифенилтрихлор-этаном, с использованием аэробного штамма Rhodococcus wratislaviensis CH628 // Почвоведение. 2017. № 10. С. 1262-1269. https://doi.org/10.7868/S0032180X1710001X.
- Егорова Д.О. и др. Особенности разложения хлорированных бифенилов штаммом Rhodococcus wratislaviensis КТ112-7 в условиях засоления // Прикладная биохимия и микробиология. 2018. Т. 54, № 3. С. 253-263. https://doi.org/10.7868/S0555109918030042.
- Плотникова Е.Г. др. Особенности разложения 4-хлорбифенила и 4-хлорбензойной кислоты штаммом Rhodococcus ruber P25 // Микробиология. 2012. Т. 81, № 2. С. 159-170. https://doi.org/10.1134/S0026261712020117.
- Трегер Ю. СОЗ - стойкие и очень опасные // The Chemical Journal. 2013. № 1. P. 30-34. https://tcj.ru/journal/jan-fev-2013.
- Adams C.I.M. et al. Toxicological effects of polychlorinated biphenyls (PCBs) on freshwater turtles in the United States // Chemosphere. 2016. Vol. 154. P. 148-154. https://doi.org/10.1016/j.chemosphere.2016.03.102.
- Adebusoye S.A. et al. Characterization of multiple novel aerobic polychlorinated biphenyl (PCB)-utilizing bacterial strains indigenous to contaminated tropical African soils // Biodegradation. 2008. Vol. 19, № 1. P. 145159. https://doi.org/10.1007/s10532-007-9122-x.
- Atago Y. et al. Identification of novel extracellular protein for PCB/biphenyl metabolism in Rhodococcus jostii RHA1 // Bioscience, Biotechnology, and Biochemistry. 2016. Vol. 80, № 5. P. 1012-1019. https://doi.org/10.1080/09168451.2015.1127134.
- Bako C.M. et al. Biodegradation of PCB congeners by Paraburkholderia xenovorans LB400 in presence and absence of sediment during lab bioreactor experiments // Environmental Pollution. 2021. Vol. 271. Article 116364. https://doi.org/10.1016/j.envpol.2020.116364.
- Bhattacharya A., Khare S.K. Biodegradation of 4-chlorobiphenyl by using induced cells and cell extract of Burkholderia xenovorans // Bioremediation Journal. 2017. Vol. 21. P. 109-118. https://doi.org/10.1080/10889868.2017.1282940.
- Cao Y.M. et al. Analysis of PCBs degradation abilities of biphenyl dioxygenase derived from Enterobacter sp. LY402 by molecular simulation // New Biotechnology. 2011. Vol. 29, № 1. P. 90-98. https://doi.org/10.1016/j.nbt.2011.08.005.
- Colbert C.L. et al. Structural characterization of Pandoraea pnomenusa B-356 biphenyl dioxygenase reveals features of potent polychlorinated biphenyl-degrading enzymes // PLoS One. 2013. Vol. 8, № 1. Article e52550. https://doi.org/10.1371/journal.pone.0052550.
- Devi N.L. Persistent Organic Pollutants (POPs): Environmental risks, toxicological effects, and bioremediation for Environmental Safety and Challenges for Future Research // Bioremediation of Industrial Waste for Environmental Safety / G. Saxena, R. Bharagava, eds. Singapore: Springer, 2020. Р. 53-76. https://doi.org/10.1007/978-981-13-1891-7_4.
- Egorova D.O. et al. Biodegradability of hydroxylated derivatives of commercial polychlorobiphenyls mixtures by Rhodococcus-strains // Journal of Hazardous Materials. 2020. Vol. 400. Article 123328. https://doi.org/10.1016/j.jhazmat.2020.123328.
- Final act of the Conference of Plenipotentiaries on the Stockholm, 22-23 May // UNEP / POPS/CONF/4. United Nations Environment Programme. Geneva, 2001. 44 p.
- Flavia A. et al. Degradation of atrazine by Pseudomonas sp. and Achromobacter sp. isolated from Brazilian agricultural soil // International Biodeterioration and Biodegradation. 2018. Vol. 130. P. 17-22. https://doi.org/10.1016/j.ibiod.2018.03.011.
- Furukawa K. Biochemical and genetic bases of microbial degradation of polychlorinated biphenyls (PCBs) // The Journal of General and Applied Microbiology. 2000. Vol. 46, № 6. P. 283-296. https://doi.org/10.2323/jgam.46.283.
- Hara T., Takatsuka Y. Aerobic polychlorinated biphenyl-degrading bacteria isolated from the Tohoku region of Japan are not regionally endemic // Canadian Journal of Microbiology. 2022. Vol. 68, № 3. P. 191-202. doi: 10.1139/cjm-2021-0056.
- Hatamian-Zarmi A. et al. Extensive biodegradation of highly chlorinated biphenyl and Aroclor 1242 by Pseudomonas aeruginosa TMU56 isolated from contaminated soils // International Biodeterioration and Biodegradation. 2009. Vol. 63, № 6. P. 788-794. https://doi.org/10.1016/j.ibiod.2009.06.009.
- Hernandez B.S. et al. Terpene-utilizing isolates and their relevance to enhanced biotransformation of polychlorinated biphenyls in soil // Biodegradation. 1997. Vol. 8, № 3. P. 153-158. https://doi.org/10.1023/A:1008255218432.
- Hong Q. et al. Isolation of a biphenyl-degrading bacterium, Achromobacter sp. BP3, and cloning of the bph gene cluster // International Biodeterioration and Biodegradation. 2009. Vol. 63, № 4. P. 365-370. https://doi.org/10.1016/j.ibiod.2008.10.009.
- Hou L.H. et al. Phylogenetic characterization of several para- and meta-PCB dechlorinating Clostridium species: 16s rDNA sequence analyses // Letters in Applied Microbiology. 2000. Vol. 30, № 3. P. 238-243. https://doi.org/10.1046/j.1472-765x.2000.00709.x.
- Hu J. et al. Sphingobium fuliginis HC3: a novel and robust isolated biphenyl-and polychlorinated biphen-yls-degrading bacterium without dead-end intermediates accumulation // PloS one. 2015. Vol. 10, № 4. Article e0122740. https://doi.org/10.1371/journal.pone.0122740.
- Ilori M.O. et al. Aerobic mineralization of 4,4'-dichlorobiphqnyl and 4-chlorobenzoic acid by a novel natural bacterial strain that grows poorly on benzoate and biphenyl // World J. Microbiol. Biotechnol. 2008a. Vol. 24. P. 1259-1265. https://doi.org/10.1007\s11274-007-9597-y
- Ilori M.O. et al. Degradation and mineralization of 2-chloro-, 3-chloro-and 4-chlorobiphenylby a newly characterized natural bacterial strain isolated from an electrical transformer fluid-contaminated soil // Journal of Environmental Sciences. 2008b. Vol. 20, № 10. P. 1250-1257. https://doi.org/10.1016/s1001-0742(08)62217-2.
- Ilori M.O. et al. Catabolic plasmid specifying polychlorinated biphenyl degradation in Cupriavidus sp. strain SK-4: Mobilization and expression in a pseudomonad // Journal of Basic Microbiology. 2015. Vol. 55, № 3. P. 338-345. https://doi.org/10.1002/jobm.201200807.
- Jia L.Y. et al. Isolation and characterization of comprehensive polychlorinated biphenyl degrading bacterium, Enterobacter sp. LY402 // J. Microbiol. Biotechnol. 2008. Vol. 18, № 5. P. 952-957. PMID: 18633297.
- Kim S., Picardal F.W. A novel bacterium that utilizes monochlorobiphenyls and 4-chlorobenzoate as growth substrates // FEMS Microbiology Letters. 2000. Vol. 185, № 2. P. 225-229. https://doi.org/10.1111/j.1574-6968.2000.tb09066.x.
- Kour D. et al. Gene manipulation and regulation of catabolic genes for biodegradation of biphenyl compounds // In New and Future Developments in Microbial Biotechnology and Bioengineering. 2019. P. 1-23. https://doi.org/10.1016/B978-0-444-63503-7.00001-2.
- Liang Y. et al. Potential for polychlorinated biphenyl biodegradation in sediments from Indiana Harbor and Ship Canal // International Biodeterioration and Biodegradation. 2014. Vol. 89. P. 50-57. https://doi.org/10.1016/j.ibiod.2014.01.005.
- Masai E. et al. Characterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1 // Appl. Environ. Microbiol. 1995. Vol. 61, № 6. P. 2079-2085. https://doi.org/10.1128/aem.61.6.2079-2085.1995.
- Müller M.H.B. et al. Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in human breast milk and associated health risks to nursing infants in Northern Tanzania // Environmental research. 2017. Vol. 154. P. 425-434. https://doi.org/10.1016/j.envres.2017.01.031.
- Nam I.H. et al. Biodegradation of biphenyl and 2-chlorobiphenyl by a Pseudomonas sp. KM-04 isolated from PCBs-contaminated coal mine soil /// Bulletin of Environmental Contamination and Toxicology. 2014. Vol. 93, № 1. P. 89-94. https://doi.org/10.1007/s00128-014-1286-6.
- Negret-Bolagay D. et al. Persistent organic pollutants: the trade-off between potential risks and sustainable remediation methods // Journal of environmental Management. 2021. Vol. 300. Article 113737. https://doi.org/10.1016/j.jenvman.2021.113737.
- Park S.H. et al. Adaptive and cross-protective responses of Pseudomonas sp. DJ-12 to several aro-matics and other stress shocks // Current Microbiology. 2001. Vol. 43, № 3. P. 176-181. https://doi.org/10.1007/s002840010283.
- Pieper D.H., Seeger M. Bacterial metabolism of polychlorinated biphenyls // Journal of Molecular Microbiology and Biotechnology. 2008. Vol. 15, № 2-3. P. 121-138. https://doi.org/10.1159/000121325.
- Ponce B.L. et al. Antioxidant compounds improved PCB-degradation by Burkholderia xenovorans strain LB400 // Enzyme and Microbial Technology. 2011. Vol. 49, № 6-7. P. 509-516. https://doi.org/10.1016/j.enzmictec.2011.04.021.
- Reddy A.V.B. et al. Polychlorinated biphenyls (PCBs) in the environment: recent updates on sampling, pretreatment, cleanup technologies and their analysis // Chemical Engineering Journal. 2019. Vol. 358. P. 1186-1207. https://doi.org/10.1016/j.cej.2018.09.205.
- Sakai M. et al. 2-Hydroxypenta-2, 4-dienoate metabolic pathway genes in a strong polychlorinated biphenyl degrader, Rhodococcus sp. strain RHA1 // Appl. Environ. Microbiol. 2003. Vol. 69, № 1. P. 427433. https://doi.org/10.1128/AEM.69.L427-433.2003.
- Shuai J. et al. Regional analysis of potential polychlorinated biphenyl degrading bacterial strains from China // Brazilian Journal of Microbiology. 2016. Vol. 47, № 3. P. 536-541. https://doi.org/10.1016/j.bjm.2014.12.001.
- Somaraja P.K. et al. Molecular characterization of 2-chlorobiphenyl degrading Stenotrophomonas maltophilia GS-103 // Bulletin of Environmental Contamination and Toxicology. 2013. Vol. 91, № 2. P. 148-153. https://doi.org/10.1007/s00128-013-1044-1.
- Tarlachkov S.V. et al. Draft genome sequence of glyphosate-degrading Achromobacter insolitus strain Kg 19 (VKM B-3295), isolated from agricultural soil // Microbiology Resource Announcements. 2020. Vol. 9, № 17. Article e00284-20. doi: 10.1128/MRA.00284-20.
- Warenik-Bany M. et al. Impact of environmental pollution on PCDD/F and PCB bioaccumulation in game animals // Environmental Pollution. 2019. Vol. 255. Article 113159 https://doi.org/10.1016/j.envpol.2019.113159.
- Witzig R. et al. Assessment of toluene/biphenyl dioxygenase gene diversity in benzene-polluted soils: links between benzene biodegradation and genes similar to those encoding isopropylbenzene dioxy-genases // Appl. Environ. Microbiol. 2006. Vol. 72, № 5. P. 3504-3514. https://doi.org/10.1128/AEM.72.5.3504-3514.2006.
- Xing Z. et al. Degradation Mechanism of 4-Chlorobiphenyl by Consortium of Pseudomonas sp. Strain CB-3 and Comamonas sp. Strain CD-2 // Current Microbiology. 2020. Vol. 77. P. 15-23. https://doi.org/10.1007/s00284-019-01791-9A.
- Xu L. et al. Congener selectivity during polychlorinated biphenyls degradation by Enterobacter sp. LY402 // Current Microbiology. 2011. Vol. 62, № 3. P. 784-789. https://doi.org/10.1007/s00284-010-9792-1.
- Zhang P. et al. Distribution and transfer pattern of polychlorinated biphenyls (PCBs) among the selected environmental media of Ny-Alesund, the Arctic: as a case study // Marine Pollution Bulletin. 2014. Vol. 89, № 1-2. P. 267-275.
- Zhu L. et al. Degradation mechanism of biphenyl and 4,4'-dichlorobiphenyl cis-dihydroxylation by non-heme 2,3 dioxygenases BphA: A QM/MM approach // Chemosphere. 2020. Vol. 247. Article125844. https://doi.org/10.1016/j.chemosphere.2020.125844.