Development of a classifier of photo images of pathologies for an ultra-small data set

Автор: Adamov Anton A., Gndoyan Irina A., Dyatchina Alena I., Khramov Vladimir N.

Журнал: Математическая физика и компьютерное моделирование @mpcm-jvolsu

Рубрика: Моделирование, информатика и управление

Статья в выпуске: 1 т.26, 2023 года.

Бесплатный доступ

The purpose of the work is to create an algorithm and implement it in a software tool for classifying photographic images of pathology of the central region of the human fundus, detected by autofluorescence research, according to 8 types-patterns: normal, minimal changes, focal, spotted, linear, lace-like, reticular, speckled. Methods used machine learning algorithms (convolutional neural networks) and computer vision (histogram methods, perceptual hash algorithms). The main feature of the task is an ultra-small set of unique photoimages with an accurately diagnosed type of pathology (18 pieces). The accuracy of forecasts when solving a problem using a neural network is 12.5%. The accuracy of the predictions of the developed algorithm using a combination of histograms, perceptual hash and one reference photo of the normal state of the fundus is 60% when selecting the classifier parameters from a set of onephoto for one pathology. When using three reference photos, the norm is 85%. The proposed solution can be used in medicine, ophthalmology, photonics and optics of biological tissues, machine learning for both research and educational purposes.

Еще

Photo image processing, computer vision, machine learning, image classification, histogram, perceptual hash, ophthalmological diagnostics, computerization of medicine

Короткий адрес: https://sciup.org/149142931

IDR: 149142931   |   DOI: 10.15688/mpcm.jvolsu.2023.1.3

Статья научная