Development of neural networks for modeling diffraction of electromagnetic radiation on a single cylinder and a group of cylindrical objects
Автор: Chitorkin E.E., Golovashkin D.L.
Журнал: Компьютерная оптика @computer-optics
Рубрика: Дифракционная оптика, оптические технологии
Статья в выпуске: 6 т.49, 2025 года.
Бесплатный доступ
We show the effectiveness of using neural networks to model the diffraction of electromagnetic radiation on cylindrical objects, and compare various architectures of neural networks. The error of the neural-network-aided diffraction modeling is evaluated for different problem statements and varying cylinder parameters. The application of the proposed models for the case of several cylinders is also analyzed.
Neural networks, convolutional neural networks, Maxwell’s equations
Короткий адрес: https://sciup.org/140313252
IDR: 140313252 | DOI: 10.18287/2412-6179-CO-1640