Разработка технологии и освоение производства труб диаметром 2520 мм
Автор: Баталов Г.С., Шандер С.В., Гизатуллин А.Б., Шакиров Р.Д., Котлов А.О.
Журнал: Вестник Южно-Уральского государственного университета. Серия: Металлургия @vestnik-susu-metallurgy
Рубрика: Обработка металлов давлением. Технологии и машины обработки давлением
Статья в выпуске: 2 т.24, 2024 года.
Бесплатный доступ
Укрепление береговых линий в условиях Крайнего Севера является сложной и технически трудновыполнимой задачей. Для минимизации неконтролируемых природных катаклизмов и достаточно суровых погодных условий, а также в связи с большими объемами портов укрепление береговой линии производится трубным шпунтом и сваями диаметром 2520 мм. Продукция является востребованной и высокомаржинальной. Данный сортамент ранее не производился в промышленных масштабах в компании ПАО «ТМК» и в целом на территории РФ. Единственным способом, который позволяет получать требуемую заготовку, является способ JCOE. В данной статье описаны основные этапы освоения труб диаметром 2520 мм. 1. С использованием современных методов инженерного анализа, основанных на методе конечных элементов (МКЭ), была проведена оценка технической возможности производства труб, а также разработка технологических режимов подгибки и формовки труб. 2. Проведен анализ влияния механических свойств на геометрические показатели готовой продукции. Предложена новая методика контроля геометрии трубной заготовки в процессе шаговой формовки с последующей предиктивной аналитикой. Получены уравнения множественной регрессии, позволяющие оценить влияние изменения контролируемых размеров листовой заготовки в процессе шаговой формовки. 3. С использованием современных пакетов CAD-моделирования был разработан и спроектирован новый автоматизированный участок по сборке заготовок. 4. Разработана технологическая схема производства труб нового сортамента. 5. Проведены опытные работы по производству труб. Разработанный новый способ производства труб диаметром 2520 мм расширил существующий сортамент предприятия, а также показал положительную экономическую эффективность за счет высокой маржинальной стоимости. Новый метод производства подтвердил свою работоспособность и на практике (производство опытной партии) доказал возможность существования.
Новый вид продукции, сварные трубы, трубы большого диаметра, шаговая формовка, метод конечных элементов
Короткий адрес: https://sciup.org/147243980
IDR: 147243980 | DOI: 10.14529/met240204
Список литературы Разработка технологии и освоение производства труб диаметром 2520 мм
- Технология и оборудование трубного производства: учеб. для вузов / В.Я. Осадчий, А.С. Вавилин, В.Г. Зимовец, А.П. Коликов. М.: Интермет Инжиниринг, 2001. 608 с.
- Дерикс В., Гензер Б. Новые технологии экономичного и гибкого производства труб большого диаметра // Труды XIII Междунар. науч.-практ. конф. «Трубы 2005». Челябинск: ОАО «РосНИТИ», 2005. Ч. 1. С. 105–108.
- Самусев С.В., Люскин А.В., Больдт В.В. Анализ способов формовки заготовки для производства труб большого диаметра // Сталь. 2009. № 12. С. 46–49.
- Ильичев В.Г., Залавин Я.Е. Экспериментальное определение сил трения в очаге деформации при вальцевой формовке труб большого диаметра // Вестник ЮУрГУ. Серия «Металлургия». 2015. Т. 15, № 3. С. 127–132.
- Залавин Я.Е. Расчет параметров вальцевой формовки с целью минимизации неравномерности деформации заготовки в поперечном сечении // Вестник ЮУрГУ. Серия «Металлургия». 2020. Т. 20, № 4. С. 23–29. DOI: 10.14529/met200403
- Баталов Г.С., Лунев А.А., Радионова Л.В. Разработка новых способов производства двухшовных труб большого диаметра // Вестник ЮУрГУ. Серия «Металлургия». 2019. Т. 19, № 4. С. 37–48. DOI: 10.14529/met190405
- Development of new methods for the production of large-diameter double-seam pipes / G.S. Batalov, L.V. Radionova, V.D. Lezin, A.A. Lunev // Solid State Phenomena. 2021. Vol. 316. P. 538–548.
- Разработка технологических режимов участка формовки трубной заготовки в линии ТЭСА 1420 ОАО «Челябинский трубный завод» / С.В. Самусев, А.И. Романцов, К.Л. Жигунов и др. // Производства проката. 2011. № 10. С. 20–28.
- Анализ технологий трехмерного моделирования и создания 3D объектов для различных интеллектуальных систем / Д.А. Чувиков, Н.А. Казакова, О.О. Варламов, А.М. Хадиев // Автоматизация и управление в технических системах. 2014. № 2. С. 84–97. DOI: 10.12731/2306-1561-2014-2-9
- Исследование сходимости результатов моделирования в различных программных комплексах при производстве тройников штампосварных / К.С. Торгонин, Г.С. Баталов, В.В. Широков, Л.В. Радионова // Вестник ЮУрГУ. Серия «Металлургия». 2021. Т. 21, № 2. С. 58–69. DOI: 10.14529/met210206
- Галкин В.В., Чебурков А.С., Пачурин Г.В. Оценка напряженно-деформированного состояния металла трубных заготовок, изготовленных пошаговой формовкой, методом математического моделирования // Современные проблемы науки и образования. 2013. № 2. С. 1–9.
- Коликов А.П., Звонарев Д.Ю., Осадчий В.Я. Математическая модель формовки листовой заготовки при производстве сварных труб большого диаметра // Пластическая деформация металлов: сб. науч. тр.: в 2 т. Днепропетровск, 2014. Т. 1. С. 118–122.
- Palumbo G., Tricarico L. Effect of forming and calibration operations on the final shape of large diameter welded tubes // Journal of Materials Processing Technology. 2005. Vol. 164–165. P. 1089–1098.
- Дубинский Ф.С., Соседкова М.А. Математическое планирование эксперимента в прокатке: конспект лекций. Челябинск: Изд-во ЮУрГУ, 2007. 25 с.
- Волкова П.А., Шипунов А.Б. Статистическая обработка данных в учебно-исследовательских работах. М.: Экопресс, 2008. 60 с.