Recognition of forest species and ages using algorithms based on error-correcting output codes

Автор: Dmitriev Egor V., Kozoderov Vladimir V., Dementyev Alexander O., Sokolov Anton A.

Журнал: Журнал Сибирского федерального университета. Серия: Техника и технологии @technologies-sfu

Статья в выпуске: 6 т.10, 2017 года.

Бесплатный доступ

The basic model of the recognition of forest inventory characteristics using spectral features is represented in the framework of the problem of hyperspectral airborne imagery processing. The algorithm of multiclass supervised classification based on the error-correcting output codes underlies this model. The support vector machine method is used as the necessary binary classifier. The method of the construction of training set by using mixed forest plots is represented. Results of the retrieval of species and age composition of forest stands from hyperspectral images are represented for the selected test area. The estimate of accuracy of the retrieval of the mixed forest composition is comparable with the accuracy of ground-based forest inventory data.

Еще

Remote sensing, pattern recognition, spectral classification, hyperspectral measurements

Короткий адрес: https://sciup.org/146115247

IDR: 146115247   |   DOI: 10.17516/1999494X-2017-10-6-794-804

Список литературы Recognition of forest species and ages using algorithms based on error-correcting output codes

  • Marshall M., Thenkabail P. Advantage of hyperspectral EO-1 Hyperion over multispectral IKONOS, GeoEye-1, WorldView-2, Landsat ETM+, and MODIS vegetation indices in crop biomass estimation. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 108, 205-218
  • Navarro-Cerrillo R., Trujillo J., Sánchez de la Orden M., Hernández-Clemente R. Hyperspectral and multispectral satellite sensors for mapping chlorophyll content in a Mediterranean Pinus sylvestris L. plantation. International Journal of Applied Earth Observation and Geoinformation, 2014, 26, 88-96
  • Laurin G.V., Puletti N., Hawthorne W., Liesenberg V., Corona P., Papale D., Chen Q., Valentini R. Discrimination of tropical forest types, dominant species, and mapping of functional guilds by hyperspectral and simulated multispectral Sentinel-2 data. Remote Sensing of Environment, 2016, 176, 163-176
  • Dmitriev E.V. Classification of the Forest Cover of Tver’ Region Using Hyperspectral Airborne Imagery. Izvestiya, Atmospheric and Oceanic Physics, 2014, 50(9), 929-942
  • Dietterich T.G., Bakiri G. Solving Multiclass Learning Problems via Error-Correcting Output Codes. Journal of Articial Intelligence Research, 1995, 2, 263-286
  • Shawe-Taylor J., Cristianini N. Kernel Methods for Pattern Analysis. Cambridge University Press, 2004, 462
  • Kozoderov V.V., Kondranin T.V., Dmitriev E.V., Sokolov A.A. Retrieval of forest stand attributes using optical airborne remote sensing data. Optics Express, 2014, 22(13), 15410-15423
Еще
Статья научная