Редактирование генома сельскохозяйственной птицы: современное состояние и перспективы использования в птицеводстве (обзор)

Автор: Волкова Н.А., Ветох А.Н., Зиновьева Н.А.

Журнал: Сельскохозяйственная биология @agrobiology

Рубрика: Обзоры, проблемы

Статья в выпуске: 6 т.56, 2021 года.

Бесплатный доступ

В настоящее время достигнут значительный прогресс в области генетической модификации сельскохозяйственной птицы. Разработаны методы и методические подходы по введению рекомбинантных генов в клетки птиц. Их эффективность варьирует в зависимости от объекта исследований, клеток-мишеней, выбранных для введения рекомбинантной ДНК, и способа их трансформации. В качестве клеток-мишеней для внесения направленных модификаций рассматриваются клетки бластодермы, примордиальные зародышевые клетки, сперматогонии, спермии, клетки яйцевода. Генетическую трансформацию клеток-мишеней можно осуществить посредством ретровирусных, лентивирусных и аденовирусных векторов, электропорации, липофекции. Выделяют три основные стратегии создания генетически модифицированной птицы: введение генетических конструкций непосредственно в эмбрион (J. Love с соавт., 1994; Z. Zhang с соавт., 2012) или в отдельные органы и ткани взрослых особей (Д.В. Белоглазов с соавт., 2015; S. Min с соавт., 2011); трансфекция клеток-мишеней в культуре in vitro и их последующая трансплантация в эмбрион или органы-мишени (M.-C. van de Lavoir с соавт., 2006; B. Benesova с соавт., 2014); трансформация спермиев in vitro и осеменение самок трансформированной спермой (E. Harel-Markowitz с соавт., 2009). Эти подходы применялись при разработке методов редактирования генома клеток птиц. Изучена возможность модификации клеток птиц посредством различных систем редактирования, в частности ZFN (zinc finger nuclease), TALEN (transcription activator-like effector nucleases) и CRISPR/Cas9 (clustered regularly interspaced palindromic repeats). К перспективным направлениям использования этой технологии в птицеводстве относятся изучение функций генов (N. Véron с соавт., 2015), получение рекомбинантных протеинов в составе яичного белка (I. Oishi с соавт., 2018), улучшение хозяйственно ценных и продуктивных качеств (J. Ahn с соавт., 2017), повышение устойчивости к инфекционным заболеваниям (A. Koslová с соавт., 2020; R. Hellmich с соавт., 2020). С помощью технологии редактирования генома получены куры с нокаутом генов тяжелой цепи иммуноглобулина (B. Schusser с соавт., 2013; L. Dimitrov с соавт., 2016), овомуцина (I. Oishi с соавт., 2016), миостатина (G.-D. Kim с соавт., 2020), а также с интегрированным геном бета-интерферона человека (I. Oishi с соавт., 2018). Выведены перепела с нокаутом генов миостатина (J. Lee с соавт., 2020) и меланофилина (J. Lee с соавт., 2019). В ряде исследований показана простота, безопасность и доступность системы редактирования CRISPR/Cas9 для модификации генома сельскохозяйственной птицы, что позволяет рассматривать эту систему как эффективный инструмент для создания и коммерческого использования пород и линий птиц с улучшенными качествами в рамках реализации крупномасштабных селекционных программ по повышению качества птицеводческой продукции. В настоящем обзоре рассмотрены основные методы и методические подходы по генетической модификации сельскохозяйственной птицы, в том числе с привлечением различных систем редактирования генома, а также основные направления и перспективы применения этой технологии в птицеводстве.

Еще

Куры, перепела, трансгенез, геномное редактирование, crispr/cas9, примордиальные зародышевые клетки, половые клетки

Короткий адрес: https://sciup.org/142231898

IDR: 142231898   |   DOI: 10.15389/agrobiology.2021.6.1015rus

Список литературы Редактирование генома сельскохозяйственной птицы: современное состояние и перспективы использования в птицеводстве (обзор)

  • Ivarie R. Avian transgenesis: progress towards the promise. Trends in Biotechnology, 2003, 21(1): 14-19 (doi: 10.1016/S0167-7799(02)00009-4).
  • Amro W.A., Al-Qaisi W., Al-Razem F. Production and purification of IgY antibodies from chicken egg yolk. Journal of Genetic Engineering and Biotechnology, 2018, 16(1): 99-103 (doi: 10.1016/j.jgeb.2017.10.003).
  • Lillico S.G., McGrew M.J., Sherman A., Sang H.M. Transgenic chickens as bioreactors for pro-tein-based drugs. Drug Discovery Today, 2005, 10(3): 191-196 (doi: 10.1016/S1359-6446(04)03317-3).
  • Stern C.D. The marginal zone and its contribution to the hypoblast and primitive streak of the chick embryo. Development, 1990, 109: 667-682.
  • Mozdziak P.E., Petitte J.N. Status of transgenic chicken models for developmental biology. De-velopmental Dynamics, 2004, 229(3): 414-421 (doi: 10.1002/dvdy.10461).
  • Cooper C.A., Doran T.J., Challagulla A., Tizard M.L.V., Jenkins K.A. Innovative approaches to genome editing in avian species. Journal of Animal Science and Biotechnology, 2018, 9: 15 (doi: 10.1186/s40104-018-0231-7).
  • Bahrami S., Amiri-Yekta A., Daneshipour A., Jazayeri S.H., Mozdziak P.E., Sanati M.H., Gour-abi H. Designing a transgenic chicken: applying new approaches toward a promising bioreactor. Cell Journal, 2020, 22(2): 133-139 (doi: 10.22074/cellj.2020.6738).
  • Véron N., Qu Z., Kipen P.A.S., Hirst C.E., Marcelle C. CRISPR mediated somatic cell genome engineering in the chicken. Developmental Biology, 2015, 407(1): 68-74 (doi: 10.1016/j.yd-bio.2015.08.007).
  • Ahn J., Lee J., Park J.Y., Oh K.B., Hwang S., Lee C.-W., Lee K. Targeted genome editing in a quail cell line using a customized CRISPR/Cas9 system. Poultry Science, 2017, 96(1): 1445-1450 (doi: 10.3382/ps/pew435).
  • Bhattacharya T.K., Shukla R., Chatterjee R.N., Bhanja S.K. Comparative analysis of silencing expression of myostatin (MSTN) and its two receptors (ACVR2A and ACVR2B) genes affecting growth traits in knock down chicken. Scientific Reports, 2019, 9: 7789 (doi: 10.1038/s41598-019-44217-z).
  • Koslová A., Trefil P., Mucksová J., Reinišová M., Plachý J., Kalina J., Kučerová D., Geryk J., Krchlíková V., Lejčková B., Hejnar J. Precise CRISPR/Cas9 editing of the NHE1 gene renders chickens resistant to the J subgroup of avian leukosis virus. Proceedings of the National Academy of Sciences, 2020, 117(4): 2108-2112 (doi: 10.1073/pnas.1913827117).
  • Hellmich R., Sid H., Lengyel K., Flisikowski K., Schlickenrieder A., Bartsch D., Thoma T., Bertzbach L.D., Kaufer B.B., Nair V., Preisinger R., Schusser B. Acquiring resistance against a retroviral infection via CRISPR/Cas9 targeted genome editing in a commercial chicken line. Frontiers in Genome Editing, 2020, 2: 3 (doi: 10.3389/fgeed.2020.00003).
  • Petersen B. Basics of genome editing technology and its application in livestock species. Repro-duction in Domestic Animals, 2017, 52(S3): 4-13 (doi: 10.1111/rda.13012).
  • Sander J.D., Joung J.K. CRISPR-Cas systems for genome editing, regulation and targeting. Na-ture Biotechnology, 2014, 32(4): 347-355 (doi: 10.1038/nbt.2842).
  • Panda S.K., Wefers B., Ortiz O., Floss T., Schmid B., Haass C., Wurst W., Kühn R. Highly efficient targeted mutagenesis in mice using TALENs. Genetics, 2013, 195(3): 703-713 (doi: 10.1534/genetics.113.156570).
  • Chu V.T., Weber T., Wefers B., Wurst W., Sander S., Rajewsky K., Kühn R. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mam-malian cells. Nature Biotechnology, 2015, 33: 543-548 (doi: 10.1038/nbt.3198).
  • Wefers B., Panda S.K., Ortiz O., Brandl C., Hensler S., Hansen J., Wurst W., Kühn R. Genera-tion of targeted mouse mutants by embryo microinjection of TALEN mRNA. Nature Protocols, 2013, 8: 2355-2379 (doi: 10.1038/nprot.2013.142).
  • Мензоров А.Г., Лукьянчикова В.А., Кораблев А.Н., Серова И.А., Фишман В.С. Практи-ческое руководство по редактированию геномов системой CRISPR/Cas9. Вавиловский журнал генетики и селекции, 2016, 20(6): 930-944 (doi: 10.18699/VJ16.214).
  • Barrangou R., Fremaux C., Deveau H., Richards M., Boyaval P., Moineau S., Romero D., Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315(5819): 1709-1712 (doi: 10.1126/science.1138140).
  • Cong L., Ran F. A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Mar-raffini L. A., Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339 (6121): 819-823 (doi: 10.1126/science.1231143).
  • Anders C., Niewoehner O., Duerst A., Jinek M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature, 2014, 513: 569-573 (doi: 10.1038/nature13579).
  • Gonatopoulos-Pournatzis T., Aregger M., Brown K.R., Farhangmehr S., Braunschweig U., Ward H.N., Ward H.N., Ha K.C.H., Weiss A., Billmann M., Durbic T., Myers C.L., Blen-cowe B.J., Moffat J. Genetic interaction mapping and exon-resolution functional genomics with a hybrid Cas9-Cas12a platform. Nature Biotechnology, 2020, 38: 638-648 (doi: 10.1038/s41587-020-0437-z).
  • Najm F.J., Strand C., Donovan K.F., Hegde M., Sanson K.R., Vaimberg E.W., Sullender M.E., Hartenian E., Kalani Z., Fusi N., Listgarten J., Younger S.T., Bernstein B.E., Root D.E., Doen J.G. Orthologous CRISPR-Cas9 enzymes for combinatorial genetic screens. Nature Bio-technology, 2018, 36(2): 179-189 (doi: 10.1038/nbt.4048).
  • Pennisi E. The CRISPR craze. Science, 2013, 341(6148): 833-836 (doi: 10.1126/science.341.6148.833).
  • Wilson L.O.W., Reti D., O’Brien A.R., Dunne R.A., Bauer D.C. High activity target-site identi-fication using phenotypic independent CRISPR-Cas9 core functionality. The CRISPR Journal, 2018, 1(2): 182-190 (doi: 10.1089/crispr.2017.0021).
  • Salsman J., Dellaire G. Precision genome editing in the CRISPR era. Biochemistry and Cell Biology, 2017, 95: 187-201 (doi: 10.1139/bcb-2016-0137).
  • Love J., Gribbin C., Mather C., Sang H. Transgenic birds by DNA microinjection. Nat. Biotech-nol., 1994, 12(1): 60-63 (doi: 10.1038/nbt0194-60).
  • Zhang Z., Sun P., Yu F., Yan L., Yuan F., Zhang W., Wang T., Wan Z., Shao Q., Li Z. Transgenic quail production by microinjection of lentiviral vector into the early embryo blood vessels. PLoS ONE, 2012, 7(12): e50817 (doi: 10.1371/journal.pone.0050817).
  • Белоглазов Д.В., Волкова Н.А., Волкова Л.А., Зиновьева Н.А. Эффективность локального трансгенеза клеток яйцевода кур под воздействием гормональной стимуляции. Сельскохозяйственная биология, 2015, 50(6): 729-735 (doi: 10.15389/agrobiology.2015.6.729rus).
  • Min S., Qing S.Q., Hui Y.Y., Zhi F.D., Rong Q.Y., Feng X., Chun L.B. Generation of antiviral transgenic chicken using spermatogonial stem cell transfected in vivo. African Journal of Biotech-nology, 2011, 10(70): 15678-15683 (doi: 10.5897/AJB11.040).
  • van de Lavoir M.-C., Diamond J.H., Leighton P.A., Mather-Love C., Heyer B.S., Bradshaw R., Kerchner A., Hooi L.T., Gessaro T.M., Swanberg S.E., Delany M.E., Etches R.J. Germline transmission of genetically modified primordial germ cells. Nature, 2006, 441: 766-769 (doi: 10.1038/nature04831).
  • Benesova B., Mucksova J., Kalina J., Trefil P. Restoration of spermatogenesis in infertile male chickens after transplantation of cryopreserved testicular cells. British Poultry Science, 2014, 55(6): 837-845 (doi: 10.1080/00071668.2014.974506).
  • Harel-Markowitz E., Gurevich M., Shore L.S., Katz A., Stram Y., Shemesh M. Use of sperm plasmid DNA lipofection combined with REMI (restriction enzyme-mediated insertion) for pro-duction of transgenic chickens expressing eGFP (enhanced green fluorescent protein) or human follicle-stimulating hormone Biology of Reproduction, 2009, 80(5): 1046-1052 (doi: 10.1095/bi-olreprod.108.070375).
  • Salter D.W., Smith E.J., Hughes S.H., Wright S.E., Crittenden L.B. Transgenic chickens: inser-tion of retroviral genes into the chicken germ line. Virology, 1987, 157(1): 236-240 (doi: 10.1016/0042-6822(87)90334-5).
  • Chen H.Y., Garber E.A., Mills E., Smith J., Kopchick J.J., Dilella A.G., Smith R.G. Vectors, promoters, and expression of genes in chick embryos. Journal of Reproduction and Fertility. Sup-plement, 1990, 41: 173-182.
  • Bosselman R.A., Hsu R.Y., Boggs T., Hu S., Bruszewski J., Ou S., Kozar L., Martin F., Green C., Jacobsen F., Nicolson M., Schultz J.A., Semon K.M., Rishell W., Stewart R.G. Germline transmission of exogenous genes in the chicken. Science, 1989, 243(4890): 533-535 (doi: 10.1126/science.2536194).
  • Mozdziak P.E., Borwornpinyo S., McCoy D.W., Petitte J.N. Development of transgenic chickens expressing bacterial beta-galactosidase. Developmental Dynamics, 2003, 226(3): 439-445 (doi: 10.1002/dvdy.10234).
  • Mizuarai S., Ono K., Yamaguchi K., Nishijima M., Kamihira M., Iijima S. Production of trans-genic quails with high frequency of germ-line transmission using VSV-G pseudotyped retroviral vector. Biochemical and Biophysical Research Communications, 2001, 286(3): 456-463 (doi: 10.1006/bbrc.2001.5422).
  • Kwon M.S., Koo B.C., Choi B.R., Park Y.Y., Lee Y.M., Suh H.S., Park Y.S., Lee H.T., Kim J.H., Roh J.Y., Kim N.H., Kim T. Generation of transgenic chickens that produce bioactive human granulocyte-colony stimulating factor. Molecular Reproduction and Development, 2008, 75(7): 1120-1126 (doi: 10.1002/mrd.20860).
  • Harvey A.J., Ivarie R. Validating the hen as a bioreactor for the production of exogenous proteins in egg white. Poultry Science, 2003, 82 (6): 927-930 (doi: 10.1093/ps/82.6.927).
  • Harvey A.J., Speksnijder G., Baugh L.R., Morris J.A., Ivarie R. Expression of exogenous protein in the egg white of transgenic chickens. Nature Biotechnology, 2002, 20(4): 396 (doi: 10.1038/nbt0402-396).
  • Smith C.A., Roeszler K.N., Sinclair A.H. Robust and ubiquitous GFP expression in a single generation of chicken embryos using the avian retroviral vector, RCASBP. Differentiation, 2009, 77(5): 473-482 (doi: 10.1016/j.diff.2009.02.001).
  • Kamihira M., Ono K., Esaka K., Nishijima K., Kigaku R., Komatsu H., Yamashita T., Kyogoku K., Iijima S. High-level expression of single-chain Fv-Fc fusion protein in serum and egg white of genetically manipulated chickens by using a retroviral vector. Journal of Virology, 2005, 79(17): 10864-10874 (doi: 10.1128/JVI.79.17.10864-10874.2005).
  • Kodama D., Nishimiya D., Nishijima K., Okino Y., Inayoshi Y., Kojima Y., Ono K., Mo-tono M., Miyake K., Kawabe Y., Kyogoku K., Yamashita T., Kamihira M., Iijima S. Chicken oviduct-specific expression of transgene by a hybrid ovalbumin enhancer and the Tet expression system. Journal of Bioscience and Bioengineering, 2012, 113(2): 146-153 (doi: 10.1016/j.jbi-osc.2011.10.006).
  • Rapp J.C., Harvey A.J., Speksnijder G.L., Hu W., Ivarie R. Biologically active human interferon a-2b produced in the egg white of transgenic hens. Transgenic Research, 2003, 12(5): 569-575 (doi: 10.1023/A:1025854217349).
  • Scott B.B., Velho T.A., Sim S., Lois C. Applications of avian transgenesis. ILAR Journal, 2010, 51(4): 353-361 (doi: 10.1093/ilar.51.4.353).
  • McGrew M.J., Sherman A., Ellard F.M., Lillico S.G., Gilhooley H.J., Kingsman A.J., Mitroph-anous K.A., Sang H. Efficient production of germline transgenic chickens using lentiviral vectors. EMBO Reproduction, 2004, 5(7): 728-733 (doi: 10.1038/sj.embor.7400171).
  • Lillico S.G., Sherman A., McGrew M.J., Robertson C.D., Smith J., Haslam C., Barnard P., Radcliffe P.A., Mitrophanous K.A., Elliot E.A., Sang H.M. Oviduct-specific expression of two therapeutic proteins in transgenic hens. Proceedings of the National Academy of Sciences, 2007, 104(6): 1771-1776 (doi: 10.1073/pnas.0610401104).
  • Chapman S.C., Lawson A., Macarthur W.C., Wiese R.J., Loechel R.H., Burgos-Trinidad M., Wakefield J.K., Ramabhadran R., Mauch T.J., Schoenwolf G.C. Ubiquitous GFP expression in transgenic chickens using a lentiviral vector. Development, 2005, 132(5): 935-940 (doi: 10.1242/dev.01652).
  • Byun S.J., Kim S.W., Kim K.W., Kim J.S., Hwang I.S., Chung H.K., Kan I.S., Jeon I.S., Chang W.K., Park S.B., Yoo J.G. Oviduct-specific enhanced green fluorescent protein expression in transgenic chickens. Bioscience, Biotechnology, and Biochemistry, 2011, 75(4): 646-649 (doi: 10.1271/bbb.100721).
  • Kwon S.C., Choi J.W., Jang H.J., Shin S.S., Lee S.K., Park T.S., Choi I.Y., Lee G.S., Song G., Han J.Y. Production of biofunctional recombinant human interleukin 1 receptor antagonist (rhIL1RN) from transgenic quail egg white. Biology of Reproduction, 2010, 82(6): 1057-1064 (doi: 10.1095/biolreprod.109.081687).
  • Cao D.N., Wu H.Y., Li Q.Y., Sun Y.M., Liu T.X., Fei J., Zhao Y.F., Wu S., Hu X.X., Li N. Expression of recombinant human lysozyme in egg whites of transgenic hens. PLoS ONE, 2015, 10(2): e0118626 (doi: 10.1371/journal.pone.0118626).
  • Liu T.X., Wu H.Y., Cao D.N., Li Q.Y., Zhang Y.Q., Li N., Hu X.X. Oviduct-specific expression of human neutrophil defensin 4 in lentivirally generated transgenic chickens. PLoS ONE, 2015, 10(5): e0127922 (doi: 10.1371/journal.pone.0127922).
  • Chojnacka-Puchta L., Kasperczyk K., Płucienniczak G., Sawicka D., Bednarczyk M. Primordial germ cells (PGCs) as a tool for creating transgenic chickens. Polish Journal of Veterinary Sciences, 2012, 15(1): 181-188 (doi: 10.2478/v10181-011-0132-6).
  • Macdonald J., Glover J.D., Taylor L., Sang H.M., McGrew M.J. Characterisation and germline transmission of cultured avian primordial germ cells. PLoS ONE, 2010, 5(11): e15518 (doi: 10.1371/journal.pone.0015518).
  • Zheng Y., Zhang Y., Qu R., He Y., Tian X., Zeng W. Spermatogonial stem cells from domestic animals: progress and prospects. Reproduction, 2014, 147(3): 65-74 (doi: 10.1530/REP-13-0466).
  • Li B., Sun G., Sun H., Xu Q., Gao B., Zhou G., Zhau W., Wu X., Bao W., Yu F., Wang K., Chen G. Efficient generation of transgenic chickens using the SSCs in vivo and ex vivo transfec-tion. Science China Life Sciences, 2008, 51: 734-742 (doi: 10.1007/s11427-008-0100-2).
  • Han J.Y. Germ cells and transgenesis in chickens. Comparative Immunology, Microbiology & In-fectious Diseases, 2009, 32(2): 61-80 (doi: 10.1016/j.cimid.2007.11.010).
  • Nakamura Y., Usui F., Miyahara D., Mori T., Ono T., Takeda K., Nira-sawa K., Kagami H., Tagami T. Efficient system for preservation and regeneration of genetic resources in chicken: concurrent storage of primordial germ cells and live animals from early embryos of a rare indig-enous fowl (Gifujidori). Reproduction, Fertility and Development, 2010, 22(8): 1237-1246 (doi: 10.1071/RD10056).
  • Takashima S. Biology and manipulation technologies of male germline stem cells in mammals. Reproductive Medicine and Biology, 2018, 17(4): 398-406 (doi: 10.1002/rmb2.12220).
  • Eyal-Giladi H., Kochav S. From cleavage to primitive streak formation: a com-plementary nor-mal table and a new look at the first stages of the development of the chick. I. General morphol-ogy. Developmental Biology, 1976, 49(2): 321-337 (doi: 10.1016/0012-1606(76)90178-0).
  • Zhao D.-F., Kuwana T. Purification of avian circulating primordial germ cells by nycodenz density gradient centrifugation. British Poultry Science, 2003, 44(1): 30-35 (doi: 10.1080/0007166031000085382).
  • Mozdziak P.E., Angerman-Stewart J., Rushton B., Pardue S.L., Petitte J.N. Isolation of chicken primordial germ cells using fluorescence-activated cell sorting. Poultry Science, 2005, 84(4): 594-600 (doi: 10.1093/ps/84.4.594).
  • Sisakhtnezhad S., Bahrami A.R., Matin M.M., Dehghani H., Momeni-Moghaddam M., Boozar-pour S., Farshchian M., Dastpak M. The molecular sig-nature and spermatogenesis potential of newborn chicken spermatogonial stem cells in vitro. In Vitro Cellular & Developmental Biology — Animal, 2015, 51: 415-425 (doi: 10.1007/s11626-014-9843-1).
  • Li B., Wang X.-Y., Tian Z., Xiao X.-J., Xu Q., Wei C.-X., Sun H.-C., Chen G.-H. Directional differentiation of chicken spermatogonial stem cells in vitro. Cytotherapy, 2010, 12(3): 326-331 (doi: 10.3109/14653240903518155).
  • Yu F., Ding L.-J., Sun G.-B., Sun P.-X., He X.-H., Ni L.-G., Li B.-C. Transgenic sperm produced by electrotransfection and allogeneic transplantation of chicken fetal spermatogonial stem cells. Mo-lecular Reproduction and Development, 2010, 77(4): 340-347 (doi: 10.1002/mrd.21147).
  • Hong Y.H., Moon Y.K., Jeong D.K., Han J.Y. Improved transfection efficiency of chicken gon-adal primordial germ cells for the production of transgenic poultry. Transgenic Research, 1998, 7(4): 247-252 (doi: 10.1023/A:1008861826681).
  • Naito M., Harumi T., Kuwana T. Long term in vitro culture of chicken primordial germ cells isolated from embryonic blood and incorporation into germline of recipient embryo. Poultry Sci-ence, 2010, 47(1): 57-64 (doi: 10.2141/jpsa.009058).
  • Tyack S.G., Jenkins K.A., O’Neil T.E., Wise T.G., Morris K.R., Bruce M.P., McLeod S., Wade A.J., McKay J., Moore R.J., Schat K.A., Lowenthal J.W., Doran T.J. A new method for producing transgenic birds via direct in vivo transfection of primordial germ cells. Transgenic Research, 2013, 22(6): 1257-1264 (doi: 10.1007/s11248-013-9727-2).
  • Sawicka D., Chojnacka-Puchta L. Effective transfection of chicken primordial germ cells (PGCs) using transposon vectors and lipofection. Folia Biologica, 2019, 67(1): 45-52 (doi: 10.3409/fb_67-1.04).
  • Kalina J., Senigl F., Micáková A., Mucksová J., Blazková J., Yan H., Poplstein M., Hejnar J., Trefil P. Retrovirus-mediated in vitro gene transfer into chicken male germ line cells. Reproduc-tion, 2007, 134(3): 445-453 (doi: 10.1530/rep-06-0233).
  • Allioli N., Thomas J.-L., Chebloune Y., Nigon V.-M., Verdier G., Legras C. Use of retroviral vectors to introduce and express the β-galactosidase marker gene in cultured chicken primordial germ cell. Developmental Biology, 1994, 165(1): 30-37 (doi: 10.1006/dbio.1994.1231).
  • Jiang Z.-Q., Wu H.-Y., Tian J., Li N., Hu X.-X. Targeting lentiviral vectors to primordial germ cells (PGCs): An efficient strategy for generating transgenic chickens. Zoological Research, 2020, 41(3): 281-291 (doi: 10.24272/j.issn.2095-8137.2020.032).
  • Ветох А.Н., Волкова Л.А., Иолчиев Б.С., Томгорова Е.К., Волкова Н.А. Генетическая модификация половых клеток петухов с использованием различных методических подходов. Сельскохозяйственная биология, 2020, 55(2): 306-314 (doi: 10.15389/agrobiology.2020.2.306rus).
  • Macdonald J., Taylor L., Sherman A., Kawakami K., Takahashi Y., Sang H.M., McGrew M.J. Efficient genetic modification and germ-line transmission of primordial germ cells using piggyBac and Tol2 transposons. Proceedings of the National Academy of Sciences, 2012, 109(23): E1466-E1472 (doi: 10.1073/pnas.1118715109).
  • Lambeth L.S., Morris K.R., Wise T.G., Cummins D.M., O’Neil T.E., Cao Y., Sinclair A.H., Doran T.J., Smith C.A. Transgenic chickens overexpressing aromatase have high estrogen levels but maintain a predominantly male phenotype. Endocrinology, 2016, 157(1): 83-90 (doi: 10.1210/en.2015-1697).
  • Zhao R., Zuo Q., Yuan X. Jin K., Jin J., Ding Y., Zhang C., Li T., Jiang J., Li J., Zhang M., Shi X., Sun H., Zhang Y., Xu Q., Chang G., Zhao Z., Li B., Wu X., Zhang Y., Song J., Chen G., Li B. Production of viable chicken by allogeneic transplantation of primordial germ cells induced from somatic cells. Nature Communications, 2021, 12: 2989 (doi: 10.1038/s41467-021-23242-5).
  • Woodcock M.E., Gheyas A.A., Mason A.S., Nandi S., Taylor L., Sherman A., Smith J., Burt D.W., Hawken R., McGrew M.J. Reviving rare chicken breeds using genetically engineered sterility in surrogate host birds. Proceedings of the National Academy of Sciences, 2019, 116(42): 20930-20937 (doi: 10.1073/pnas.190631611678).
  • Kang S.J., Choi J.W., Kim S.Y., Park K.J., Kim T.M., Lee Y.M., Kim H., Lim J.M., Han J.Y. Reproduction of wild birds via interspecies germ cell transplantation. Biology of Reproduction, 2008, 79(5): 931-937 (doi: 10.1095/biolreprod.108.069989).
  • Wernery U., Liu C., Baskar V., Guerineche Z., Khazanehdari K.A., Saleem S., Kinne J., Wer-nery R., Griffin D.K., Chang I.-K. Primordial germ cell-mediated chimera technology produces viable pure-line Houbara bustard off-spring: potential for repopulating an endangered species. PLoS ONE, 2010, 5(12): e15824 (doi: 10.1371/journal.pone.0015824).
  • Trefil P., Bakst M.R., Yan H., Hejnar J., Kalina J., Mucksová J. Restoration of spermatogenesis after transplantation of c-Kit positive testicular cells in the fowl. Theriogenology, 2010, 74(9): 1670-1676 (doi: 10.1016/j.theriogenology.2010.07.002).
  • Kim Y.M., Park J.S., Yoon J.W., Choi H.J., Park K.J., Ono T., Han J.Y. Production of germline chimeric quails following spermatogonial cell transplantation in busulfan-treated testis. Asian Jour-nal of Andrology, 2018, 20(4): 414-416 (doi: 10.4103/aja.aja_79_17).
  • Park K.J., Kang S.J., Kim T.M., Lee Y.M., Lee H.C., Song G., Han J.Y. Gamma irradiation depletes endogenous germ cells and increases donor cell distribution in chimeric chickens. In Vitro Cellular & Developmental Biology, 2010, 46: 828-833 (doi: 10.1007/s11626-010-9361-8).
  • Trefil P., Polak J., Poplstein M., Mikus T., Kotrbová A., Rozinek J. Preparation of fowl testes as recipient organs to germ-line chimeras by means of gamma-radiation. British Poultry Sci-ence, 2003, 44(4): 643-650 (doi: 10.1080/00071660310001616246).
  • Tagirov M., Golovan S. The effect of busulfan treatment on endogenous spermatogonial stem cells in immature roosters. Poultry Science, 2012, 91(7): 1680-1685 (doi: 10.3382/ps.2011-02014).
  • Nakamura Y., Yamamoto Y., Usui F., Atsumi Y., Ito Y., Ono T., Takeda K., Nirasawa K., Kagami H., Tagami T. Increased proportion of donor primordial germ cells in chimeric gonads by sterilisation of recipient embryos using busulfan sustained-release emulsion in chickens. Re-production, Fertility and Development, 2008, 20(8): 900-907 (doi: 10.1071/RD08138).
  • Motono M., Yamada Y., Hattori Y., Nakagawa R., Nishijima K., Iijima S. Production of trans-genic chickens from purified primordial germ cells infected with a lentiviral vector. Journal of Bioscience and Bioengineering, 2010, 109(4): 315-321 (doi: 10.1016/j.jbiosc.2009.10.007).
  • van de Lavoir M.C., Collarini E.J., Leighton P.A., Fesler J., Lu D.R., Harriman W.D., Thiyagasundaram T.S., Etches R.J. Interspecific germline transmission of cultured primordial germ cells. PLoS ONE, 2012, 7(5): e35664 (doi: 10.1371/journal.pone.0035664).
  • Han J.Y., Park Y.H. Primordial germ cell-mediated transgenesis and genome editing in birds. Journal of Animal Science and Biotechnology, 2018, 9: 19 (doi: 10.1186/s40104-018-0234-4).
  • Abu-Bonsrah K.D., Zhang D., Newgreen D.F. CRISPR/Cas9 targets chicken embryonic somatic cells in vitro and in vivo and generates phenotypic abnormalities. Scientific Report, 2016, 6: 34524 (doi: 10.1038/srep34524).
  • Zhang Y., Wang Y., Zuo Q., Li D., Zhang W., Wang F., Ji Y., Jin J., Lu Z., Wang M., Zhang C., Li B. CRISPR/Cas9 mediated chicken Stra8 gene knockout and inhibition of male germ cell differentiation. PLoS ONE, 2017, 12(2): e0172207 (doi: 10.1371/journal.pone.0172207).
  • Koslová A., Kučerová D., Reinišová M., Geryk J., Trefil P., Hejnar J. Genetic resistance to avian leukosis viruses induced by CRISPR/Cas9 editing of specific receptor genes in chicken cells. Viruses, 2018, 10(11): 605 (doi: 10.3390/v10110605).
  • Bai Y., He L., Li P., Xu K., Shao S., Ren C., Liu Z., Wei Z., Zhang Z. Efficient genome editing in chicken DF-1 cells using the CRISPR/Cas9 system. G3 Genes|Genomes|Genetics, 2016, 6(4): 917-923 (doi: 10.1534/g3.116.027706).
  • Lee J.H., Kim S.W., Park T.S. Myostatin gene knockout mediated by Cas9-D10A nickase in chicken DF1 cells without off-target effect. Asian-Australasian Journal of Animal Sciences, 2017, 30(5): 743-748 (doi: 10.5713/ajas.16.0695).
  • Schusser B., Collarini E.J., Yi H., Izquierdo S. M., Fesler J., Pedersen D., Klasing, K. C. Kaspers B., Harriman W. D., van de Lavoir M.-C., Etches R.J., Leighton P.A. Immunoglobulin knockout chickens via efficient homologous recombination in primordial germ cells. Proceedings of the National Academy of Sciences, 2013, 110(50): 20170-20175 (doi: 10.1073/pnas.1317106110).
  • Dimitrov L., Pedersen D., Ching K.H., Yi H., Collarini E.J., Izquierdo S., van de Lavoir M.-C., Leighton P.A. Germline gene editing in chickens by efficient CRISPR-mediated homologous recombination in primordial germ cells. PLoS ONE, 2016, 11(4): e0154303 (doi: 10.1371/jour-nal.pone.0154303).
  • Taylor L., Carlson D.F., Nandi S., Sherman A., Fahrenkrug S.C., McGrew M.J. Efficient TALEN-mediated gene targeting of chicken primordial germ cells. Development, 2017, 144(5): 928-934 (doi: 10.1242/dev.145367).
  • Park T.S., Lee H.J., Kim K.H., Kim J.-S., Han J.Y. Targeted gene knockout in chickens mediated by TALENs. Proceedings of the National Academy of Sciences, 2014, 111(35): 12716-12721 (doi: 10.1073/pnas.1410555111).
  • Oishi I., Yoshii K., Miyahara D., Kagami H., Tagami T. Targeted mutagenesis in chicken using CRISPR/Cas9 system. Scientific Reports, 2016, 6: 23980 (doi: 10.1038/srep23980).
  • Oishi I., Yoshii K., Miyahara D., Tagami T. Efficient production of human interferon beta in the white of eggs from ovalbumin gene—targeted hens. Scientific Reports, 2018, 8: 10203 (doi: 10.1038/s41598-018-28438-2).
  • Qin X., Xiao N., Xu Y., Yang F., Wang X., Hu H., Liu Q., Cui K., Tang X. Efficient knock-in at the chicken ovalbumin locus using adenovirus as a CRISPR/Cas9 delivery system. 3 Biotech, 2019, 9: 454 (doi: 10.1007/s13205-019-1966-3).
  • Kim G.-D., Lee J.H., Song S., Kim S.W., Han J.S., Shin S.P., Park B.-C., Park T.S. Generation of myostatin-knockout chickens mediated by D10A-Cas9 nickase. FASEB, 2020, 34(4): 5688-5696 (doi: 10.1096/fj.201903035R).
  • Lee J., Kim D.-H., Lee K. Muscle hyperplasia in Japanese quail by single amino acid deletion in MSTN propeptide. International Journal of Molecular Sciences, 2020, 21 (4): 1504 (doi: 10.3390/ijms21041504).
  • Lee J., Ma J., Lee K. Direct delivery of adenoviral CRISPR/Cas9 vector into the blastoderm for generation of targeted gene knockout in quail. Proceedings of the National Academy of Sciences, 2019, 116(27): 13288-13292 (doi: 10.1073/pnas.1903230116).
Еще
Статья обзорная