Redox enzymes of red beetroot vacuoles ( Beta vulgaris L.)

Автор: Pradedova E.V., Nimaeva O.D., Salyaev R.K.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 4 т.10, 2014 года.

Бесплатный доступ

Years of research have shown that some of the redox elements (enzymes, coenzymes, and co-substrate) are isolated from each other kinetic and spatial manner (compartmentalization) in the eukaryotic cells. The redox elements forming the "highly" and "widely" specialized redox system are found in all cell structures: mitochondria, plastids, peroxisomes, apoplast, nucleus etc. In recent years the active involvement of the central vacuole in the maintenance of the plant cell redox homeostasis is discussed, actually the information about the vacuolar redox system is very small. The high-priority redox processes and "redox-specialization" of the vacuolar compartment are not known. We have begun a study of red beet-root vacuole redox systems ( Beta vulgaris L.) and have identified redox enzymes such as: phenol peroxidase (EC 1.11.1.7), superoxide dismutase (EC 1.15.1.1) and glutathione reductase (EC 1.8.1.7). This paper presents some of the characteristics of these enzymes and considers the probable ways of their functioning in vacuolar redox chains.

Еще

Beta vulgaris l, vacuole, glutathione transferase, peroxidase, redox chain, superoxide dismutase

Короткий адрес: https://sciup.org/14323915

IDR: 14323915

Список литературы Redox enzymes of red beetroot vacuoles ( Beta vulgaris L.)

  • Almagro L., Gomez Ros L.V., Belchi-Navarro S., Bru R., Ros Barcello A. and Pedreno M.A. (2009) Class III peroxidases in plant defense reactions. J. Exp. Bot., 60, 377-390
  • Anderson J.V., Hess J.L. and Chevone B. (1990) Purification, characterization and immunological properties for two isoforms of glutathione reductase from eastern white pine needles. Plant Physiol., 94, 1402-1409
  • Baranenko V.V. (2006) Superoxide dismutase in plant cells. Tsitologiya (Rus.), 48, 465-474
  • Beauchamp C. and Fridovich I. (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem., 44, 276-287
  • Berezov T.T. and Korovkin B.F. (1998) Biological chemistry: Uchebnik. 3rd (ed.), Revised. and suppl. M.: Medicine, 704 p
  • Bilzer M., Krauth-Siegel R.L., Schirmer R.H., Akerboom T.P.M., Sies H. and Schulz G.E. (1984) Interaction of a glutathione S-conjugate with glutathione reductase kinetic and X-ray crystallographic studies. Eur. J. Biochem., 138, 373-378
  • Bradford M. (1976) A rapid and sensitive method for the quantitation of protein utilising the principal of protein-dye binding. Anal. Biochem., 72, 248-254
  • Carter C., Pan S., Zouhar J., Avila E.L., Girke T., Raikhel N.V. (2004) The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant cell., 16, 3285-3303
  • Chen S. and Schopfer P. (1999) Hydroxyl-radical production in physiological reactions a novel function of peroxidase. Eur. J. Biochem., 260, 726-735
  • Cherenkevich S.N., Martinovich G.G., Martinovich I.V., Gorudko I.V. and Shamova E.V. (2013) Redox regulation of cellular activity: concepts and mechanisms. Bulletin of the National Academy of Sciences of Belarus. Series of Biological Scien., 1, 92-108
  • Coleman J. and Rehm K.H. (2000) Visual biochemistry: Transl. German. M.: Mir, 469 p
  • Edwards G.E., Nakamoto H., Bunell J.N. end Hatch M.D. (1985) Pyruvate, Pi dikinase and NADP-malate dehydrogenase in C4 photosynthesis: properties and mechanism of light/dark regulation. Annu. Rev. Plant Physiol., 36, 255-286
  • Ferreres F., Figueiredo R., Bettencourt S., Carqueijeiro I., Oliveira J., Gil-Izquierdo A., Pereira D.M., Valentao P., Andrade P.B., Duarte P., Barcelo A.R. and Sottomayor M. (2011) Identification of phenolic compounds in isolated vacuoles of the medicinal plant Catharanthus roseus and their interaction with vacuolar class III peroxidase: an H2O2 affair? J. Exp. Botany., 62, 2841-2854
  • Gaal O., Medgyesi G.A. and Vereczkey L. (1980) Electrophoresis in the separation of biological macromolecules. New York: John Wiley & Sons Ltd, 422 p
  • Giannopolitis C.N. and Ries S.K. (1977) Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol., 59, 309-314
  • Jones D.P. (2008) Radical-free biology of oxidative stress. Am. J. Physiol. Cell Physiol., 295, 849-868
  • Kritskii M.S. and Telegina T.A. (2004) Coenzymes and evolution of the RNA world. Uspekhi Biologicheskoi Khimii, 44, 341-361
  • Ksenzhek O.S. and Petrova S.A. (1986) The electrochemical properties of the redox-reversible biological systems. M.: Nauka, 152 p
  • Leigh R.A., Branton D. (1976) Isolation of vacuoles from root storage tissue of Beta vulgaris L. Plant Physiol., 58, 656-662
  • Levites E.V. (1986) Genetics of plant isozymes. Nauka: Sibir. Dep., 144 p
  • Li J.L.Y., Sulaiman M., Beckett R.P. and Minibayeva F.V. (2010) Cell wall peroxidases in the liverwort Dumortiera hirsuta are responsible for extracellular superoxide production, and can display tyrosinase activity. Physiol. Plantarum., 138, 474-484
  • Martinovich G.G. and Cherenkevich S.N. (2008) Redox processes in cells: Monograph. Mn.: BSU, 159 p
  • Marty L., Siala W., Schwarzlander M., Fricker M.D., Wirtz M., Sweetlove L.J., Meyer Y., Meyer A.J., Reichheld J.P. and Hell R. (2009) The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A., 106, 9109-9114
  • Melissa K., Go Y.M. and Jones D.P. (2008) Non-equilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. Free Radic Biol Med., 44, 921-937
  • Murray R., Grenner D., Meyes P. and Rodwell V. (1993) Biochemiya cheloveka (Harper's biochemistry. 2 volumes. V. 1. Translat. Eng.M.: Mir, 384 p
  • Nishikimi M., Rao N.A. and Yagi K. (1972) The occurrence of superoxide anion in the reaction of reduced phenasine methosulfate and molecular oxygen. Biochem. Biophys. Res. Comm., 46, 849-856
  • Noctor G., Queval G., Mhamdi A. Chaouch S. and Foyer C.H. (2011) Glutathione. The Arabidopsis Book. Published By: The American Society of Plant Biologists URL: http://www.bioone.org/doi/full/10.1199/tab.0142, 9, 2-32
  • Pradedova E.V., Isheeva O.D. and Salyaev R.K. (2009) Superoxide dismutase of palnt cell vacuoles. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 3, 24-32
  • Pradedova E.V., Nimaeva O.D., Trukhan I.S. and Salyaev R. K. (2014) Tyrosinase and superoxide dismutase activities of peroxidase in the vacuoles of beet roots. Russian J. of Plant Physiol., 61, 70-79
  • Queval G., Jaillard D., Zechmann B. and Noctor G. (2011) Increased intracellular H2O2 availability preferentially drives glutathione accumulation in vacuoles and chloroplasts. Plant Cell and Environ., 34, 21-32
  • Rautenkranz A.F., Li L., Machler F., Martinoia E. and Oertli J.J. (1994) Transport of ascorbic and dehydroascorbic acids across protoplast and vacuole membranes isolated from barley (Hordeum vulgare l. cv Gerbel) leaves. Plant Physiol., 106, 187-193
  • Rogozhin V.V., Verkhoturov V.V. and Rogozhina T.V. (2004) Peroksidaza: stroenie i mekhanizm deistviya (Peroxidase: structure and mechanism of action). Irkutsk: Irkutsk. Gos. Tech. Univ., 200 p
  • Saab-Rincon G. and Valderrama B. (2009) Protein engineering of redox-active enzymes. Antioxidants & redox signaling, 11, 167-189
  • Salyaev R.K., Kuzevanov V.Y., Khaptogaev S.B. and Kopytchuk V.N. (1981) Isolation and purification of vacuoles and vacuolar membranes from plant cells. Russ. J. Plant Physiol., 25, 1295-1305
  • Shao H. B., Chu L. Y., Lu Z. H. and Kang C. M. (2008) Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int. J. Biol. Sci., 4, 8-14
  • Shigeoka S., Onishi T., Nakano Y. and Kitaoka S. (1987) Characterization and physiological function of glutathione reductase in Euglena gracilisz. Biochem. J., 242, 511-515
  • Tommasini R., Martinoia E., Grill E., Dietz K.J. and Amrhein N. (1993) Transport of oxidized glutathione into barley vacuoles: evidence for the involvement of the glutathione-S-conjugate ATPase. Zeitschrift Naturforsch., 48, 867-871
  • Vanoni M.A., Wong K.K., Ballou D.P. and Blanchard J.S. (1990) Glutathione reductase: comparison of steady-state and rapid reaction primary kinetic isotope effects exhibited by the yeast, spinach, and Escherichia coli enzymes. Biochemistri, 29, 5790-5796
  • Voskresenskaya, O.L., Alyabysheva, E.A. and Polovnikova, M.G. (2006) Bol'shoi praktikum po bioekologii, Ch. 1 (Large Manual on Bio-Ecology), Ioshkar-Ola: Mariisk. Gos. Univ., 107 p
  • Wingsle G., Gardestrom P., Haligren J.E. and Karpinski S. (1991) Isolation, purification, and subcellular localization of isozymes of superoxide dismutase from scots pine (Pinus sylvestris L.) Needles1. Plant Physiol., 95, 21-28
  • Yudina R.S. (2012) Malate dehydrogenase in plants: Its genetics, structure, localization and use as a marker. Advances in Bioscience and Biotechnology, 3, 370-377
  • Zholnin A.V. (2012) General chemistry: a textbook. V.A., Popkov, A.V., Zholnina (ed). M.: GEOTAR Media, 400 p
Еще
Статья научная