Рекуррентные нейронные сети с непрерывным обучением в задачах многофункциональной обработки новостных потоков
Автор: Василий Юрьевич Осипов, Сергей Викторович Кулешов, Дмитрий Игоревич Милосердов, Александра Алексеевна Зайцева, Алексей Юрьевич Аксенов
Журнал: Информатика и автоматизация (Труды СПИИРАН).
Рубрика: Искусственный интеллект, инженерия данных и знаний
Статья в выпуске: Том 21 № 6, 2022 года.
Бесплатный доступ
Главной задачей использования нейронных сетей является оперативное и точное решение различных творческих задач, таких как анализ и синтез новостных потоков при сохранении непрерывности обучения. Результатом такой обработки могут быть дайджесты, новостные потоки, прошедшие фильтрацию, а также прогнозы событий, позволяющих обеспечивать проактивность в управленческих решениях Известные методы обработки новостей нейронными сетями и реализующие их технические решения не в полной мере обеспечивают решение возникающих в этой области задач. Необходимо расширить их функциональные возможности, совершенствовать пространственно-временное связывание сигналов в рекуррентных нейронных сетях. При обработке новостных потоков одновременно с непрерывным обучением рекуррентных нейронных сетей следует осуществлять селекцию, распознавание, восстановление, прогнозирование и синтез новостей. Для снижения остроты проблемы предлагается перспективный метод многофункциональной обработки новостных потоков с применением рекуррентных нейронных сетей с логической организацией слоев и непрерывным обучением. Метод основан на развитии ассоциативной обработки текстовой информации в потоковых рекуррентных нейронных сетях с управляемыми элементами. Ключевыми особенностями этого метода являются многофункциональная обработка информационных потоков с изменяющимися законами появления новостей. Метод предусматривает оперативный отбор, распознавание, восстановление, прогнозирование и синтез новостей на основе глубокой ассоциативной непрерывной обработки связей между текстовыми элементами. Реализующая предлагаемый метод нейросетевая система отличается от известных решений новыми элементами, связями между ними, а также выполняемыми функциями. По результатам экспериментов подтверждена расширенная функциональность метода. Выявлены новые особенности обработки новостных текстов потоковыми РНС. Предлагаемые решения могут найти применение при создании интеллектуальных систем нового поколения не только для обработки текстов, но и других видов информации.
Рекуррентные нейронные сети, интеллектуальная обработка новостей, многофункциональность, непрерывность обучения, прогнозирование
Короткий адрес: https://sciup.org/14127409
IDR: 14127409 | DOI: 10.15622/ia.21.6.3