Remark on continued fractions, Mobius transformations and cycles

Бесплатный доступ

We review interrelations between continued fractions, Mobius transformations and representations of cycles by 2 x 2 matrices. This leads us to several descriptions of continued fractions through chains of orthogonal or touching horocycles. One of these descriptions was proposed in a recent paper by A. Beardon and I. Short. The approach is extended to several dimensions in a way which is compatible to the early propositions of A. Beardon based on Clifford algebras.

Continued fractions, mobius transformations, cycles, clifford algebra

Короткий адрес: https://sciup.org/14992798

IDR: 14992798

Список литературы Remark on continued fractions, Mobius transformations and cycles

  • Khrushchev S. Orthogonal polynomials and continued fractions: from Euler’s point of view. Encyclopedia of Mathematics and its Applications. Cambridge: Cambridge University Press, 2008. Vol. 122.
  • Borwein J., van der Poorten Alf, Shallit J., Zudilin W. Neverending fractions. An introduction to continued fractions. Australian Mathematical Society Lecture Series. Cambridge: Cambridge University Press, 2014. Vol. 23.
  • Karpenkov O. Geometry of continued fractions. Algorithms and Computation in Mathematics. Heidelberg: Springer, 2013. Vol. 26.
  • Kirillov A. A. A tale of two fractals. New York: Springer, 2013.
  • Paydon J. Findlay, Wall H. S. The continued fraction as a sequence of linear transformations//Duke Math. J., 1942. Vol. 9. P. 360-372.
  • Schwerdtfeger H. Möbius transformations and continued fractions//Bull. Amer. Math. Soc., 1946. Vol. 52. P. 307-309.
  • Piranian G., Thron W. J. Convergence properties of sequences of linear fractional transformations//Michigan Math. J., 1957. Vol. 4. P. 129-135.
  • Beardon A. F., Lorentzen L. Continued fractions and restrained sequences of Möbius maps//Rocky Mountain J. Math., 2004. Vol. 34. No. 2. P. 441-446.
  • Schwerdtfeger H. Geometry of complex numbers: Circle geometry, Möbius transformation, non-Euclidean geometry. Dover Books on Advanced Mathematics. New York: Dover Publications Inc., 1979.
  • Beardon A. F. Continued fractions, discrete groups and complex dynamics//Comput. Methods Funct. Theory, 2001. Vol. 1. No. 2. P. 535-594.
  • Magee M., Oh H., Winter D. Expanding maps and continued fractions, 2014; arXiv: 1412.4284.
  • Beardon A. F. Continued fractions, Möbius transformations and Clifford algebras//Bull. London Math. Soc., 2003. Vol. 35. No. 3. P. 302-308; DOI: 10.1112/S0024609302001807
  • Cnops J. An introduction to Dirac operators on manifolds. Progress in Mathematical Physics. Boston MA: Birkhäuser Boston Inc., 2002. Vol. 24.
  • Fillmore J. P., Springer A. Möbius groups over general fields using Clifford algebras associated with spheres//Int. J. Theor. Phys., 1990. Vol. 29. No. 3. P. 225-246.
  • Kisil V. V. Erlangen program at large-0: Starting with the group SL2(R)//Notices Amer. Math. Soc., 2007. Vol. 54. No. 11. P. 1458-1465; arXiv:0607387.
  • Kisil V. V. Geometry of Möbius transformations: Elliptic, parabolic and hyperbolic actions of SL2(R). London: Imperial College Press, 2012.
  • Beardon Alan F., Short I. A geometric representation of continued fractions//Amer. Math. Monthly, 2014. Vol. 121. No. 5. P. 391-402.
  • Yaglom I. M. A simple non-Euclidean geometry and its physical basis. Heidelberg Science Library. New York: Springer-Verlag, 1979.
  • Kisil V. V. Schwerdtfeger-Fillmore-Springer Cnops construction implemented in GiNaC//Adv. Appl. Clifford Algebr., 2007. Vol. 17. No. 1. P. 59-70.
  • Ahlfors L. V. Möbius transformations in Rn expressed through 2 × 2 matrices of Clifford numbers//Complex Variables Theory Appl., 1986. Vol. 5. No. 2. P. 215-224.
Еще
Статья научная