Research on modeling and simulation of doubly fed induction wind turbine based on MATLAB/Simulink
Автор: Zheng Shouqing, Bai Yike, Hou Ruida, Wang Bao Liang
Журнал: Бюллетень науки и практики @bulletennauki
Рубрика: Технические науки
Статья в выпуске: 6 т.9, 2023 года.
Бесплатный доступ
This paper first introduces the structure of doubly fed wind power generation system and the working principle of doubly fed induction generator in detail and establishes the corresponding mathematical model of doubly fed wind power generation unit. The control part of wind power generation system based on doubly fed induction generator includes rotor side control and stator side control. The rotor side control adopts the vector control strategy based on stator flux orientation of the double-fed induction generator connected to the grid, and the working principle is analyzed in detail, and the main part of the simulation modeling is given. Stator side control adopts vector control strategy of grid-connected inverter control, and its working principle is analyzed in detail, and the main part of simulation modeling is also given. In order to verify the correctness and feasibility of the system, the simulation experiment platform of doubly fed wind turbine under this control strategy is built by using Matlab/Simulink simulation platform, and its simulation analysis is carried out in detail.
Doubly fed wind turbine, vector control, simulink simulation, decoupling control
Короткий адрес: https://sciup.org/14127992
IDR: 14127992 | DOI: 10.33619/2414-2948/91/39
Список литературы Research on modeling and simulation of doubly fed induction wind turbine based on MATLAB/Simulink
- Mohd Zin, A. A. B., Pesaran HA, M., Khairuddin, A. B., Jahanshaloo, L., & Shariati, O. (2013). An overview on doubly fed induction generators′ controls and contributions to wind based electricity generation. Renewable and Sustainable Energy Reviews, 27(C), 692-708. https://doi.org/10.1016/j.rser.2013.07.010
- Rahimi, M. (2014). Dynamic performance assessment of DFIG-based wind turbines: A review. Renewable and Sustainable Energy Reviews, 37, 852-866. https://doi.org/10.1016/j.rser.2014.05.072
- Cheng, M., & Zhu, Y. (2014). The state of the art of wind energy conversion systems and technologies: A review. Energy conversion and management, 88, 332-347. https://doi.org/10.1016/j.enconman.2014.08.037
- Torkaman, H., & Keyhani, A. (2018). A review of design consideration for Doubly Fed Induction Generator based wind energy system. Electric Power Systems Research, 160, 128-141. https://doi.org/10.1016/j.epsr.2018.02.012
- Junyent-Ferré, A., Gomis-Bellmunt, O., Sumper, A., Sala, M., & Mata, M. (2010). Modeling and control of the doubly fed induction generator wind turbine. Simulation Modelling Practice and Theory, 18(9), 1365-1381. https://doi.org/10.1016/j.simpat.2010.05.018
- Simonetti, D. S., Amorim, A. E., & Oliveira, F. D. (2018). Doubly fed induction generator in wind energy conversion systems. In Advances in Renewable Energies and Power Technologies (pp. 461-490). Elsevier. https://doi.org/10.1016/B978-0-12-812959-3.00015-0
- Chatterjee, A., & Chatterjee, D. (2015). An improved excitation control technique of threephase induction machine operating as dual winding generator for micro-wind domestic application. Energy Conversion and Management, 98, 98-106. https://doi.org/10.1016/j.enconman.2015.03.091
- Poitiers, F., Bouaouiche, T., & Machmoum, M. (2009). Advanced control of a doubly-fed induction generator for wind energy conversion. Electric Power Systems Research, 79(7), 1085-1096. https://doi.org/10.1016/j.epsr.2009.01.007
- Soares, O., Gonçalves, H., Martins, A., & Carvalho, A. (2010). Nonlinear control of the doubly-fed induction generator in wind power systems. Renewable Energy, 35(8), 1662-1670. https://doi.org/10.1016/j.renene.2009.12.008
- Jovanović, M., & Chaal, H. (2017). Wind power applications of doubly-fed reluctance generators with parameter-free hysteresis control. Energy Conversion and Management, 134, 399-409. https://doi.org/10.1016/j.enconman.2016.10.064
- Egea-Alvarez, A., Junyent-Ferre, A., Bergas-Jane, J., Bianchi, F. D., & Gomis-Bellmunt, O. (2014). Control of a wind turbine cluster based on squirrel cage induction generators connected to a single VSC power converter. International Journal of Electrical Power & Energy Systems, 61, 523-530. https://doi.org/10.1016/j.ijepes.2014.03.069
- Ghennam, T., & Berkouk, E. M. (2010). Back-to-back three-level converter controlled by a novel space-vector hysteresis current control for wind conversion systems. Electric Power Systems Research, 80(4), 444-455. https://doi.org/10.1016/j.epsr.2009.10.009
- Taveiros, F. E. V., Barros, L. S., & Costa, F. B. (2015). Back-to-back converter statefeedback control of DFIG (doubly-fed induction generator)-based wind turbines. Energy, 89, 896-906. https://doi.org/10.1016/j.energy.2015.06.027
- Chai, Z., Li, H., Xie, X., Abdeen, M., Yang, T., & Wang, K. (2021). Output impedance modeling and grid-connected stability study of virtual synchronous control-based doubly-fed induction generator wind turbines in weak grids. International Journal of Electrical Power & Energy Systems, 126, 106601. https://doi.org/10.1016/j.ijepes.2020.106601
- Bedoud, K., Rhif, A., Bahi, T., & Merabet, H. (2018). Study of a double fed induction generator using matrix converter: Case of wind energy conversion system. International Journal of Hydrogen Energy, 43(25), 11432-11441. https://doi.org/10.1016/j.ijhydene.2017.07.010
- Cárdenas, R., Pena, R., Wheeler, P., Clare, J., Munoz, A., & Sureda, A. (2013). Control of a wind generation system based on a Brushless Doubly-Fed Induction Generator fed by a matrix converter. Electric Power Systems Research, 103, 49-60. https://doi.org/10.1016/j.epsr.2013.04.006
- Hu, S., & Zhu, G. (2022). Enhanced control and operation for brushless doubly-fed induction generator based wind turbine system under grid voltage unbalance. Electric Power Systems Research, 207, 107861. https://doi.org/10.1016/j.epsr.2022.107861
- Akel, F., Ghennam, T., Berkouk, E. M., & Laour, M. (2014). An improved sensorless decoupled power control scheme of grid connected variable speed wind turbine generator. Energy Conversion and Management, 78, 584-594. https://doi.org/10.1016/j.enconman.2013.11.015
- Yousefi-Talouki, A., Pouresmaeil, E., & Jørgensen, B. N. (2014). Active and reactive power ripple minimization in direct power control of matrix converter-fed DFIG. International Journal of Electrical Power & Energy Systems, 63, 600-608. https://doi.org/10.1016/j.ijepes.2014.06.041
- Phan, D. C., & Yamamoto, S. (2016). Rotor speed control of doubly fed induction generator wind turbines using adaptive maximum power point tracking. Energy, 111, 377-388. https://doi.org/10.1016/j.energy.2016.05.077
- Gayen, P. K., Chatterjee, D., & Goswami, S. K. (2015). Stator side active and reactive power control with improved rotor position and speed estimator of a grid connected DFIG (doublyfed induction generator). Energy, 89, 461-472. https://doi.org/10.1016/j.energy.2015.05.111
- Choi, S., Kang, Y. C., Kim, K. H., Lee, Y. I., & Terzija, V. (2021). A frequencyresponsive power-smoothing scheme of a doubly-fed induction generator for enhancing the energyabsorbing capability. International Journal of Electrical Power & Energy Systems, 131, 107053. https://doi.org/10.1016/j.ijepes.2021.107053
- Wiam, A., & Ali, H. (2019). Direct torque control-based power factor control of a DFIG. Energy Procedia, 162, 296-305. https://doi.org/10.1016/j.egypro.2019.04.031
- Kaloi, G. S., Wang, J., & Baloch, M. H. (2016). Active and reactive power control of the doubly fed induction generator based on wind energy conversion system. Energy Reports, 2, 194-200. https://doi.org/10.1016/j.egyr.2016.08.001
- da Silva, K. F., & Saidel, M. A. (2010). Digital control and integration of a 192 MW wind farm with doubly fed induction generator into the Brazilian power system. Electric power systems research, 80(1), 108-114. https://doi.org/10.1016/j.epsr.2009.08.010
- Luo, X. (2021). Design of an adaptive controller for double-fed induction wind turbine power. Energy Reports, 7, 1622-1626. https://doi.org/10.1016/j.egyr.2021.09.047