Research Supervisor Recommendation System Based on Topic Conformity

Автор: Ridwan Rismanto, Arie Rachmad Syulistyo, Bebby Pramudya Citra Agusta

Журнал: International Journal of Modern Education and Computer Science @ijmecs

Статья в выпуске: 1 vol.12, 2020 года.

Бесплатный доступ

In a higher education such as universities, final project are under supervision of one or more supervisors with a similar research interest or topic. The determination of the final project supervisor is an important factor in the work of the student's final project. However, the lack of information about the supervisor can hamper students in making the determination of the supervisor. Thus, a system is needed that can facilitate students in determining the final project or thesis advisors in accordance with the research topic. This problem is the basis of this research. The study is conducted by developing a web-based system and applying the TF-IDF word weighting and cosine similarity method. TF-IDF method is a way to give the weight of the relationship of a word to the document. The cosine similarity is a method for calculating the similarity between two objects expressed in two vectors by using keywords from a document as a measure. The results of the advisor recommendation system can provide recommendations to students regarding the final assignment advisor who has conducted research in accordance with the topic of the student's final assignment written in Indonesian. In 20 testing, the accuracy of the comparison of the results of the system recommendations with the actual data obtained an average of 75% by comparing system recommendation with actual assigned supervisor.

Еще

Higher Education, Recommendation System, TF-IDF Weighting, Cosine Similarity, Research Supervisor

Короткий адрес: https://sciup.org/15017158

IDR: 15017158   |   DOI: 10.5815/ijmecs.2020.01.04

Список литературы Research Supervisor Recommendation System Based on Topic Conformity

  • H. Kaur, R. Maini, “Granularity-Based Assessment of Similarity Between Short Text Strings,” Proceedings of the Third International Conference on Microelectronics, Computing and Communication Systems, 2019.
  • A. Gupta, P. Kumar, “Efficient Hybrid Recommendation Model Based on Content and Collaborative Filtering Approach,” Emerging Trends in Expert Applications and Security, Advances in Intelligent Systems and Computing 841, Springer, 2019.
  • W. Wang, Q. Feng, F. Zhou, Y. Cao, H. LV, “Personalized employment recommendation method based on semantic matching of requirements,” Journal of Physics: Conf. Series 1213, 2019.
  • Takano Y. et al. “Improving Document Similarity Calculation Using Cosine-Similarity Graphs,” Advanced Information Networking and Applications. AINA 2019. Advances in Intelligent Systems and Computing, vol 926. Springer, Cham, 2019.
  • M. Wijewickrema, V. Petras, and N. Dias, "Selecting a text similarity measure for a content-based recommender system,", The Electronic Library, Vol. 37 No. 3, pp. 506-527. 2019.
  • Hirroe Wijaya Ani Kesuma, dan Feddy Setio Pribadi, 2016, Penerapan Cosine Similarity dalam Aplikasi Kitab Undang-Undang Hukum Dagang, Vol.8 No.1, Universitas Negeri Semarang. 2016.
  • Ade Riyani, Muhammad Zidni Naf’an, dan Auliya Burhanudin, 2019, Penerapan Cosine Similarity dan Pembobotan TF-IDF untuk mendeteksi kemiripan dokumen,Vol.2 No.1. Maret 2019, Intitut Teknologi Telkom Purwokerto
  • Ismail, M. H., Razak, T. R., Hashim, M. A., & Ibrahim, A. F. (2019). A Simple Recommender Engine for Matching Final-Year Project Student with Supervisor, 2019.
  • M.A. Hasan, D.G Schwartz, “A Multi-criteria Decision Support System for Ph.D. Supervisor Selection: A Hybrid Approach,” Proceedings of the 52nd Hawaii International Conference on System Sciences, 2019.
  • Wang, Z., Hahn, K., Kim, Y. et al. “A news-topic recommender system based on keywords extraction,“ Multimeda Tools Application 77: 4339. 2018.
  • Sripadh T., Ramesh G. “Personalized Research Paper Recommender System,” Hemanth D., Smys S. (eds) Computational Vision and Bio Inspired Computing. Lecture Notes in Computational Vision and Biomechanics, vol 28. Springer, Cham, 2018.
  • S. Mohtaj and F. Tavakkoli, "Maglet: a Persian Journal Recommender System," 9th International Symposium on Telecommunications (IST), Tehran, Iran, 2018, pp. 348-352. 2018.
  • Nakayama, K., Yamada, M., Shimada, A., Minematsu, T. & Taniguchi, R.i. “Learning Support System for Providing Page-wise Recommendation in e-Textbooks,” K. Graziano (Ed.), Proceedings of Society for Information Technology & Teacher Education International Conference (pp. 1078-1085). Las Vegas, NV, United States: Association for the Advancement of Computing in Education (AACE), 2019
  • Ayala-Gómez, F., Daróczy, B., Benczúr, A., Mathioudakis, M., Gionis, A. “Intelligent and Fuzzy Systems applied to Language & Knowledge Engineering,” Journal of Intelligent & Fuzzy Systems, vol. 34, no. 5, pp. 3089-3100, 2018.
  • B. Hawashin, M. Lafi, T. Kanan, A Mansour, “An efficient hybrid similarity measure based on user interests for recommender systems,” Expert Systems, e12471, (2019).
  • Irinanda SYahroni Wahyu, Dachlan Harie Soekotjo, Musim Muhammad Aziz “Identifikasi Kemiripan Teks Menggunakan Class Indexing Based Dan Cosine Similarity Untuk Klasifikasi Dokumen Pengaduan”, Research Gate, 2018
  • Ade Riyani, Muhammad Zidni Naf’an, dan Auliya Burhanudin, 2019, Penerapan Cosine Similarity dan Pembobotan TF-IDF untuk mendeteksi kemiripan dokumen,Vol.2 No.1. Maret 2019, Intitut Teknologi Telkom Purwokerto
  • Salam Abu, Wicaksana Verdian Putra, Khafiiz Hasturi “Sistem Rekomendasi Penentuan Dosen Pembimbing Tugas Akhir Dengan Menggunakan Algoritma Rabin-Karp”, Techno.com, Vol. 14, 2015
  • Soeparno. Dasar-dasar Linguistik. Yogyakarta: Mitra Gama Widya. 1993.
  • Y. Wang, M. Wang, W. Xu, “A Sentiment-Enhanced Hybrid Recommender System for Movie Recommendation: A Big Data Analytics Framework,” Wireless Communications and Mobile Computing Volume 2018, Article ID 8263704, 2018.
  • Rizki Tri, Dhidik Prastiyanto, dan Eko Supraptono, 2017, Penerapan Algoritma Cosine Similarity dan Pembobotan TF-IDF pada Sistem Klasifikasi Dokumen Skripsi, Vol.9 No.1, Juni 2017, Universitas Negeri Semarang
  • V. Imbar, M. Ayub, and A. Rehatta, “Implementasi Cosine Similarity dan Algoritma Smith-Waterman untuk Mendeteksi Kemiripan Teks,” J. Inform., vol. 10, hal. 31– 42, 2014.
  • Dewa Ayu Rai Ariantini, Arie S. M. Lumenta, Agustinus Jacobus. Teknik Informatika Universitas Sam Ratulangi Manado, Indonesia. 110216022,ayurai15@gmail.com, al@unsrat.ac.id, a.jacobus@unsrat.ac.id “Pengukuran Kemiripan Dokumen Teks Bahasa Indonesia Menggunakan Metode Cosine Similarity”
  • Gunawan, Indah Lestari, dan Muhammad Ihsan, 2015, Sistem Pendukung Keputusan Pemilihan Pembimbing dan Penguji Proyek Akhir di Politeknik Caltex Riau, September 2015, Politeknik Negeri Batam
  • Nurdiana Ogie, Jumadi, Nursantika Dian“Perbandingan Metode Cosine Similarity Dengan Metode Jaccard Similarity Pada Aplikasi Pencarian Terjemah Al-Qur’an Dalam Bahasa Indonesia”, JOIN, vol.1 No.1, 2016
Еще
Статья научная