Ретроспектива гипотез патогенеза посттравматического остеоартроза коленного сустава (обзор)
Автор: Зубавленко Р.А., Ульянов В.Ю., Белова С.В., Щербаков А.А.
Журнал: Саратовский научно-медицинский журнал @ssmj
Рубрика: Травматология и ортопедия
Статья в выпуске: 4 т.16, 2020 года.
Бесплатный доступ
В обзоре изложена ретроспектива изучения патогенеза посттравматического артроза коленного сустава. Проанализированы интернет-ресурсы eLibrary, PubMed и научная литература библиотеки НИИ травматологии, ортопедии и нейрохирургии Саратовского ГМУ имени В. И. Разумовского (50 источников за период с 1986 по 2020 г. включительно). В статье представлены собственные наработки, полученные экспериментальным путем на лабораторных животных.
Остеоартроз, патогенез, посттравматический
Короткий адрес: https://sciup.org/149135612
IDR: 149135612
Текст научной статьи Ретроспектива гипотез патогенеза посттравматического остеоартроза коленного сустава (обзор)
ОА определен как гетерогенная группа заболеваний различной этиологии со сходными биологическими, морфологическими, клиническими проявлениями и исходом, в основе которых лежит поражение всех компонентов сустава. По современным патофизиологическим представлениям, первоначально нарушения происходят на молекулярном уровне с последующим формированием анатомических и функциональных изменений, включая деградацию хряща, костное ремоделирование, образование остеофитов, воспаление и гипертрофию синовиальной оболочки [2].
В отличие от системных заболеваний, ОА изначально считался не воспалительным заболеванием суставов, но со временем представления о данной патологии изменились. Было определено, что в основе патогенеза ОА лежит высвобождение цитокинов интерлейкина-1 (IL-1) и фактора некроза опухоли (ФНО/TNFa), которое стимулирует воспалительную реакцию синовиальной ткани, возникающую после травмы с кровоизлиянием в полость сустава [3, 4]. Имеющиеся данные о морфогистохимических особенностях посттравматического остеоартроза (ПТОА) позволяют характеризовать это заболевание как остро текущий процесс с быстрым развитием фиброза, ранней деградацией матрикса суставного хряща и клеточных мембран, продукты которых в больших количествах проникают в синовиальную жидкость и инициируют иммунный процесс, поражающей как хрящ, так и синовиальную оболочку. Острое повреждение суставов тесно связано с повышенным уровнем IL-6, γ-интерферона, белка-хемоаттрактанта моноцитов и других провоспалительных факторов [5, 6]. Считается, что вместе с накапливающимися активными формами кислорода цитокины (IL-1, -2, -6, -8, ФНОα, интерферон γ) запускают в хондроцитах такие механизмы, как апоптоз клеток и экспрессия катаболических ферментов, тем самым способствуя прогрессивной дегенерации внеклеточного матрикса, что приводит к нарушению гомеостаза хряща.
На ПТОА приходится около 10% общей заболеваемости ОА коленных суставов [7]. Травма колена может быть незначительной и затрагивать только небольшие участки хрящевой ткани или провоцировать микроперелом в субхондральной кости, особенно при выраженном остеопорозе [8]. Современное лечение в первую очередь направлено на купирование воспаления, а также восстановление функциональности сустава. Все хирургические манипуляции эффективно стабилизируют суставной аппарат, сводя, таким образом, к минимуму аномальные сдвиги в суставе как основного фактора риска возникновения ПТОА. Вместе с тем более поздние исследования показывают, что даже в случае оптимального восстановления биомеханики сустава риск развития ПTOA остается высоким [9, 10]. Эти наблюдения, вероятно, связаны с биологическими процессами в хрящевой и костной тканях, вызванными травмой, а также с ангиогенезом в этой области [11].
Гомеостаз хрящевой ткани при ПТОА. Хондроциты синовиальных суставов составляют до 5% от общего объема хрящевой ткани. Некоторое время узкоспециализированные хондроциты считались единственным типом клеток в хряще. В настоящее время исследователи уверены в том, что существует еще одна присущая хрящам популяция, так называемые хондрогенные стволовые клетки/клетки-пред-шественники (CSPC) [12]. Выявлено, что процентная доля CSPC увеличивается после повреждения хряща. В хрящевой ткани синовиальных суставов общая доля этих популяций составляет приблизительно 8-10% [13]. Помимо CSPC, были определены семь популяций хондроцитов при поздней стадии ОА: гомеостатические хондроциты, пролиферативные хондроциты, эффекторные хондроциты, регуляторные хондроциты, прегипертрофические хондроциты, гипертрофические хондроциты и хондроциты фи-брокартижа [14]. Тем не менее в физиологических условиях метаболически активные, но постмитотические хондроциты считаются исключительно от- ветственными за синтез компонентов внеклеточного матрикса, в частности коллагена II типа, который составляет 90-95% от общего содержания коллагена в суставном хряще. Здоровый хрящ характеризуется постепенным ремоделированием внеклеточных структур, которое в основном осуществляется также хондроцитами. Согласно исследованиям, предполагаемый период полураспада коллагена составляет до 400 лет, тогда как период полураспада протеогликанов — 25 лет в случае свободной области связывания и 3,4 года — для большого мономера [15]. Длительные периоды полураспада компонентов внеклеточных структур подразумевают медленную активность и низкий метаболизм хондроцитов. Слабая метаболическая активность может быть объяснена гипоксией, недостатком питательных веществ и гипотермией (32 C°) [16] в области сустава после травмы, однако повышенная метаболическая активность хондроцитов наблюдалась на ранних стадиях ОА в отношении биосинтеза компонентов внеклеточного матрикса и катаболических ферментов [17]. Это было подтверждено тем, что коллагеновые и неколлагеновые белки в хряще пациентов, страдающих ОА коленного сустава, были на 30 лет моложе в биологическом масштабе по сравнению с хрящом здоровых суставов [18].
Особенности патогенеза ПТОА коленных суставов. Установлено, что травматические повреждения мягких тканей суставов, внутрисуставные переломы и прямое воздействие на хрящ являются основным звеном патогенеза ПTOA. Исследования показали, что пациенты, страдающие данной патологией, в основном занимаются спортом и значительно моложе большинства пациентов с ОА [19, 20]. При механическом воздействии внеклеточный матрикс и внедренные хондроциты испытывают су-прафизиологическую компрессию, вызывая альтерацию и гибель клеток [21]. Следовательно, происходит высвобождение во внеклеточный матрикс остатков, в частности фибронектина, а также внутриклеточных аларминов, т. е. нуклеиновых кислот. Связанные с повреждением молекулярные паттерны индуцируют внутриклеточные сигнальные пути через образ-распознающие рецепторы, в том числе toll-подобные рецепторы 2 и 4, и рецептор для конечных продуктов позднего гликирования, которые экспрессируются на клеточной поверхности хондроцитов [22]. Эта активация вызывает широкий спектр связанных с ОА патомеханизмов, включая экспрессию катаболических металлопротеиназ, воспалительный ответ синовиальных клеток и окислительный стресс [23]. В целом было обнаружено, что связанные с повреждением молекулярные паттерны и цитокины действуют взаимосвязано [24], усиливая травматический эффект и способствуя продолжающейся гибели клеток и разрушению хряща, образуя порочный круг.
Помимо немедленного связанного с травмой высвобождения молекулярных петтернов (DAMP), некоторые эндогенные активаторы воспаления (алармины) также активно секретируются или генерируются путем ферментативного превращения. В этом отношении было показано, что концентрации внутриклеточных аларминов достигают максимума через 24 часа после травмы хряща и затем быстро снижаются из-за замедленного распространения гибели клеток [25].
Имеются данные о травматической активации каскада комплемента — важной части врожденного иммунитета — который может участвовать в прогрес- сировании ОА [26]. Фактически исследования демонстрируют повышение концентрации определенных факторов комплемента, т. е. растворимой формы терминального комплемента (sTCC) анафилаток-синов (C3a, C5a) и C3 конвертазы, в синовиальных жидкостях пациентов после травматического повреждения сустава, что свидетельствует о повышенной активации комплемента [27]. Кроме того, было обнаружено, что факторы комплемента, и в частности терминальный комплекс комплемента (TCC), опосредуют различные патомеханизмы, включая регулируемую гибель хондроцитов, и могут приводить к вредным фенотипическим изменениям хондроцитов [28]. Тем не менее основные механизмы до сих пор не выяснены, и необходимы дальнейшие исследования, чтобы раскрыть общую важность системы комплемента во время патогенеза ПТOA.
Таким образом, основными патогенными процессами, вовлеченными в прогрессирование ОА, являются (регулируемая) гибель клеток, синовиальное воспаление и избыточная экспрессия катаболических ферментов. Связанное с этим высвобождение цитокинов представляет собой движущую силу для постоянного поддержания катаболических и воспалительных процессов, а также потери хондрогенного фенотипа.
Гибель и образование кластеров хондроцитов при ПТОА. В обычных условиях апоптоз очень важен в терминальной дифференцировке гипертрофических хондроцитов. В этом контексте апоптоти-ческие тела могут также активировать особую форму вторичного некроза из-за отсутствия фагоцитозных клеток в хрящевой ткани — так называемый хондроптоз. Что касается патогенеза ОА, то обычно наблюдаются различные способы гибели хондроцитов, такие как аутофагическая гибель клеток, апоптоз и различные формы некроза [29–31].
Механическое воздействие приводит к немедленной гибели клеток, а именно к некрозу, который характеризуется высоким высвобождением DAMP из-за внезапного разрушения плазматической мембраны [25, 31]. Это вызывает воспалительный ответ и приводит к различным патогенетическим процессам, как описано выше. Взаимодействующая с рецептором серин треонин-протеинкиназа 1 представляет собой важнейший регулятор судьбы клетки, который способен индуцировать различные клеточные процессы, от воспаления и выживания клеток до гибели клеток (апоптоз и некроптоз) [32]. В отличие от некроптоза, который возникает как регулируемая форма некроза, апоптоз не приводит к высвобождению DAMP, и поэтому рассматривается как невоспалительный способ регулируемой гибели клеток [31]. Хотя механическое напряжение, как было показано, вызывает как первичный некроз, так и апоптоз, связанный с травмой некроптоз был обнаружен in vivo [33], но, по-видимому, в моделях травмы хряща ex vivo в бессывороточных условиях он играл незначительную роль [31]. Тем не менее можно предположить, что некроптоз возникает в сильно дегенерированном хряще человека, что предполагает потенциальную роль некроптоза при заболевании ОА [31]. В целом гибель хондроцитов приводит к гипоцеллюлярно-сти, которая способствует формированию кластера клеток, что обычно рассматривается как возможный компенсаторный клеточный ответ.
В нашем эксперименте при моделировании посттравматического ОА на анимальных моделях (крысах) in vivo выраженная гипоклеточность на- блюдалась через четыре недели после травматического повреждения передней крестообразной связки, хотя была обнаружена случайная пролиферация, о чем свидетельствует образование клеточного кластера [34]. Гипоклеточность и формирование клеточного кластера были в основном расположены в поверхностной зоне в непосредственной близости от механического воздействия. С одной стороны, кластеры клеток могут вносить незначительный вклад в реальную регенерацию хряща, поскольку клетки продуцируют поврежденную ткань, содержащую коллаген типа X [35], и экспрессируют довольно гипертрофические и остеогенные маркеры. С другой стороны, исследования продемонстрировали усиление экспрессии хондроанаболических и стволовых клеток, что, соответственно, подразумевает регенеративный потенциал пролиферирующих клеток [36]. Это вызывает вопрос о том, состоят ли клеточные кластеры из «недифференцированных» хондроцитов.
Особенности фенотипических изменений пораженных хондроцитов при ПТОА. Прогрессирование ОА тесно связано с фенотипической нестабильностью пораженных хондроцитов, которые, по-видимому, теряют хондрогенные характеристики. Старение и гипертрофию, следовательно, можно рассматривать как наиболее заметные формы фенотипических изменений в пожилом возрасте у пациентов.
Гипертрофия хондроцитов в первую очередь связана с терминальной дифференцировкой во время эндохондрального окостенения в гипертрофической зоне [37]. Эти гипертрофические хондроциты либо устраняются регулируемой гибелью клеток (апоптозом и аутофагией), либо подвергаются остеогенной трансдифференцировке [38]. Между тем гипертрофия хондроцитов также может наблюдаться в деге-нерированном хряще и рассматривается как решающий признак в развитии ОА [39]. В этом контексте гипертрофический фенотип интерпретировался как изменение соответствующих этапов развития — возможно, способность восстановить дефект ткани [37]. Во время этого процесса, который в основном регулируется с помощью фактора роста эндотелия сосудов A (VEGF-a) и RUNX2 [39, 40], хондроциты демонстрируют дисфункциональное поведение, характеризующееся чрезмерной экспрессией катаболических ферментов, в частности типа MMP-13, Х-коллагена и хемокинов (т. е. CXCL1 и IL-8) [41].
Помимо гипертрофии, ОА, хондроциты также могут экспрессировать фенотип, подобный старению, хотя характеристики частично совпадают с гипертрофическим фенотипом. Например, стареющие клетки обладают ассоциированным со старением секреторным фенотипом (SASP), который демонстрирует большое сходство с гипертрофическими маркерами (т. е. IL-6, -8, MMP-13 и VEGF-a) [42]. В суставном хряще старение может происходить «естественно» в зависимости от возраста [42, 43] или может быть вызвано механическим повреждением и последующим окислительным стрессом [44]. На самом деле накопление стареющих хондроцитов часто определяется в контексте ПТОА [42]. Кроме того, повышенная активность IL-1β также сопровождается увеличением стареющих хондроцитов ( in vitro) [30, 45].
Таким образом, вне пластинки роста и консолидации ткани после перелома гипертрофированные и/или стареющие хондроциты могут рассматриваться как дисфункциональные клетки, влияющие на об- щую целостность хряща из-за чрезмерной экспрессии цитокинов и деградации внеклеточного матрикса. Фактически элиминация стареющих хондроцитов, как было показано, замедляет прогрессирование ОА [42]. Следовательно, нацеливание на гипертрофиро-ванные/стареющие клетки может быть важным новым подходом в терапии ОА и профилактике ПТОА, соответственно.
Особенности изменений субхондральной костной ткани при ПТОА. Костные изменения появляются на очень ранней стадии ОА, и в некоторых исследованиях было показано, что они опережают изменения в хряще. Было обнаружено, что повышение уровня как костного сиалопротеина, так и олигомерного матричного белка хряща происходило на ранних этапах развития остеоартрита коленного сустава, что позволяет предположить, что обновление костной ткани и обновление хряща являются параллельными процессами [46]. Рентгенографические исследования также подтвердили идею о том, что кость может быть вовлечена в раннюю патологию ПТОА. Например, выяснилось, что повышенный метаболизм субхондральной кости, обнаруженный с помощью радионуклидного сканирования костей, предшествует рентгенологическому проявлению ОА коленного сустава. Наиболее убедительные доказательства того, что кость вносит вклад в патогенез ОА, получены из исследований на животных. В экспериментальных моделях хирургическое повреждение субхондральной кости приводит к последующему разрушению вышележащего суставного хряща; возможно, при ПТОА костные изменения могут предшествовать хрящевым изменениям.
Существует две основные гипотезы о том, как костные изменения могут привести к разрушению хряща: 1 — изменения в кости могут поменять распределение биомеханических сил в суставном хряще, что, в свою очередь, приводит к дегенерации хряща [47], и 2 — при изменении кости, происходит высвобождение растворимых биомедиаторов, вызывающих разрушение вышележащего хряща. В поддержку первой гипотезы выступает тот факт, что на поздних стадиях ОА коленного сустава трабекулы подкорковой кости реконструируются из нормального заштрихованного рисунка в основном в параллельный рисунок, что ослабляет микроархитектуру кости [48]. Модели на животных также поддерживают эту идею. В подтверждение второй гипотезы известно, что существуют каналы, соединяющие субхондральную кость с вышележащим суставным хрящом в виде микротрещин [49], а исследования in vitro демонстрируют, что растворимый медиатор, продуцируемый остеобластами, может способствовать разрушению хряща за счет диффузии по этим каналам [50].
Вывод. В целом патогенез ОА и в частности ПТОА представляет собой многофакторный процесс, включающий различные механизмы, которые перекрестно взаимодействуют между собой. Несмотря на значительное количество работ как отечественных, так и зарубежных исследователей, в настоящее время остается открытым вопрос о взаимосвязи иммунологических параметров крови, синовиальной жидкости и костно-хрящевых изменениях у пациентов с ПТОА. Данный факт представляется весьма перспективным и позволит не только выявлять развитие ОА на ранних стадиях, но и проводить своевременные профилактические мероприятия, направленные на целевое лечение.
Список литературы Ретроспектива гипотез патогенеза посттравматического остеоартроза коленного сустава (обзор)
- Zhang Y, Jordan JM. Epidemiology of osteoarthritis. Clin Geriatr Med 2010; 26 (3): 355–69.
- Nasonov EL. Russian clinical guidelines. Rheumatology. Moscow: GEOTAR-Media, 2017; 464 p. Russian (Насонов Е. Л. Российские клинические рекомендации. Ревматология. М.: ГЭОТАР-Медиа, 2017; 464 c.).
- Goldring MB, Otero M, Plumb DA, et al. Roles of inflammatory and anabolic cytokines in cartilage metabolism: Signals and multiple effectors converge upon MMP-13 regulation in osteoarthritis. Eur Cell Mater 2011; 21: 202–20.
- Takeuchi Y, Hirota K, Sakaguchi S. Synovial tissue inflammation mediated by autoimmune T cells. Front Immunol 2019; 10: 1989. DOI: 10.3389 / fimmu. 2019.01989.
- Watt FE, Paterson E, Freidin A, et al. Acute molecular changes in synovial fluid following human knee injury: association with early clinical outcomes. Arthritis Rheumatol 2016; 68 (9): 2129–40. DOI: 10.1002 / art. 39677.
- Belova SV, Gladkova SV, Zubavlenko RA, et al. Early manifestations of primary knee osteoarthrosis: immunological aspects. Vrach 2020; 3: 84–7. Russian (Белова С. В., Гладкова Е. В., Зубавленко Р. А. и др. Иммунологические аспекты раннего проявления первичного остеоартроза коленных суставов. Врач 2020; 3: 84–7). DOI: 10.29296 / 25877305‑2020‑03‑18.
- Thomas AC, Hubbard-Turner T, Wikstrom EA, et al. Epidemiology of posttraumatic osteoarthritis. J Athl Train 2017; 52 (6): 491–6. DOI: 10.4085 / 1062‑6050‑51.5.08.
- Schenker ML, Mauck RL, Ahn J, et al. Pathogenesis and prevention of posttraumatic osteoarthritis after intra-articular fracture. J Am Acad Orthop Surg 2014; 22 (1): 20–8. DOI: 10.5435 / JAAOS-22‑01‑20.
- Phen HM, Schenker ML. Minimizing posttraumatic osteoarthritis after high-energy intra-articular fracture. Orthop Clin N Am 2019; 50 (4): 433–43. DOI: 10.1016 / j. ocl. 2019.05.002.
- Cheung EC, DiLallo M, Feeley BT, et al. Osteoarthritis and ACL Reconstruction-Myths and Risks. Curr Rev Musculoskelet Med 2020; 13 (1): 115–22. DOI: 10.1007 / s12178‑019‑09596‑w.
- Borrelli J, Jr Olson SA, Godbout C, et al. Understanding articular cartilage injury and potential treatments. J Orthop Trauma 2019; 33 (Suppl. 6): S6‑S12. DOI: 10.1097 / bot. 0000000000001472.
- Belova SV, Gladkova SV, Zubavlenko RA, et al. Diagnosis of early manifestations of primary osteoarthritis of the knee joints. In: Materials of scientific and practical conferences in the framework of the V Russian Congress of Laboratory Medicine. Collection of abstracts. Moscow, 2019; 224. Russian (Белова С. В., Гладкова Е. В., Зубавленко Р. А. и др. Диагностика ранних проявлений первичного остеоартроза коленных суставов. В кн.: Материалы научно-практических конференций в рамках V Российского конгресса лабораторной медицины (РКЛМ 2019): сб. тезисов. M., 2019; 224).
- Riegger J, Palm HG, Brenner RE. The functional role of chondrogenic stem / progenitor cells: Novel evidence for immunomodulatory properties and regenerative potential after cartilage injury. Eur Cell Mater 2018; 36: 110–27. DOI: 10.22203 / eCM. v036a09.
- Ji Q, Zheng Y, Zhang G, et al. Single-cell RNA-seq analysis reveals the progression of human osteoarthritis. Ann Rheum Dis 2019; 78 (1): 100–10. DOI: 10.1136 / annrheumdis-20 17–212863.
- Maroudas A, Bayliss MT, Uchitel-Kaushansky N, et al. Aggrecan turnover in human articular cartilage: Use of aspartic acid racemization as a marker of molecular age. Arch Biochem Biophys 1998; 350 (1): 61–71. DOI: 10.1006 / abbi. 1997.0492.
- Warren TA, McCarty EC, Richardson AL, et al. Intraarticular knee temperature changes: Ice versus cryotherapy device. Am J Sports Med 2004; 32 (2): 441–5. DOI: 10.1177 / 0363546503258864.
- Katsara O, Attur M, Ruoff R, et al. Increased activity of the chondrocyte translational apparatus accompanies osteoarthritic changes in human and rodent knee cartilage. Arthritis Rheumatol 2017; 69 (3): 586–97. DOI: 10.1002 / art. 39947.
- Catterall JB, Zura RD, Bolognesi MP, et al. Aspartic acid racemization reveals a high turnover state in knee compared with hip osteoarthritic cartilage. Osteoarthr Cartil 2016; 24 (2): 374–81. DOI: 10.1016 / j. joca. 2015.09.003.
- Dexel J, Beyer F, Lutzner C, et al. TKA for posttraumatic osteoarthritis is more complex and needs more surgical resources. Orthopedics 2016; 39 (3): S36‑S40. DOI: 10.3928 / 01477447‑20160509‑11.
- Carbone A, Rodeo S. Review of current understanding of post-traumatic osteoarthritis resulting from sports injuries. J Orthop Res 2017; 35 (3): 397–405. DOI: 10.1002 / jor. 23341.
- Martin JA, McCabe D, Walter M, et al. N-acetylcysteine inhibits post-impact chondrocyte death in osteochondral explants. J Bone Joint Surg Am 2009; 91 (8): 1890–7. DOI: 10.2106 / JBJS. H. 00545.
- Iqbal SM, Leonard C, Regmi SC, et al. Lubricin / proteoglycan 4 binds to and regulates the activity of toll-like receptors in vitro. Sci Rep 2016; (6): 18910. DOI: 10.1038 / srep18910.
- Rosenberg JH, Rai V, Dilisio MF, et al. Damage-associated molecular patterns in the pathogenesis of osteoarthritis: Potentially novel therapeutic targets. Mol Cell Biochem 2017; 434 (1-2): 171–9. DOI: 10.1007 / s11010‑017‑3047‑4.
- Ding L, Buckwalter JA, Martin JA. DAMPs synergize with cytokines or fibronectin fragment on inducing chondrolysis but lose effect when acting alone. Mediators Inflamm 2017; 2017: 2642549. DOI: 10.1155 / 2017 / 2642549.
- Ding L, Guo DP, Homandberg GA, et al. A single blunt impact on cartilage promotes fibronectin fragmentation and upregulates cartilage degrading stromelysin-1 / matrix metalloproteinase-3 in a bovine ex vivo model. J Orthop Res 2014; 32 (6): 811–18. DOI: 10.1002 / jor. 22610.
- Silawal S, Triebel J, Bertsch T, et al. Osteoarthritis and the complement cascade. Clin Med Insights Arthritis Musculoskelet Disord 2018; 11: 1–12. DOI: 10.1177 / 1179544117751430.
- Struglics A, Okroj M, Sward P, et al. The complement system is activated in synovial fluid from subjects with knee injury and from patients with osteoarthritis. Arthritis Res Ther 2016; 18: 223. DOI: 10.1186 / s13075‑016‑1123‑x.
- Riegger J, Huber-Lang M, Brenner RE. Crucial role of the terminal complement complex in chondrocyte death and hypertrophy after cartilage trauma. Osteoarthr Cartil 2020; 28 (5): 685–97. DOI: 10.1016 / j. joca. 2020.01.004.
- Charlier E, Relic B, Deroyer C, et al. Insights on molecular mechanisms of chondrocytes death in osteoarthritis. Int J Mol Sci 2016: 17 (12): 2146. DOI: 10.3390 / ijms17122146.
- Komori T. Cell death in chondrocytes, osteoblasts, and osteocytes. Int J Mol Sci 2016: 17 (12): 2045. DOI: 10.3390 / ijms17122045.
- Riegger J, Brenner RE. Evidence of necroptosis in osteoarthritic disease: Investigation of blunt mechanical impact as possible trigger in regulated necrosis. Cell Death Dis 2019; 10: 683. DOI: 10.1038 / s41419‑019‑1930‑5.
- Peltzer N, Darding M, Walczak H. Holding RIPK1 on the ubiquitin leash in TNFR1 signaling. Trends Cell Biol 2016; 26 (6): 445–61. DOI: 10.1016 / j. tcb. 2016.01.006.
- Zhang C, Lin S, Li T, et al. Mechanical force-mediated pathological cartilage thinning is regulated by necroptosis and apoptosis. Osteoarthr Cartil 2017; 25: 1324–34.
- Zubavlenko RA, Belova SV, Ulyanov VYu. Possibility of therapy of connective tissue structures of knee joints with post-traumatic osteoarthritis on an experimental model. In: Traumatology, Orthopedics and Neurosurgery: Interdisciplinary Aspects. Saratov, 2019; 54–7. Russian (Зубавленко Р. А., Белова С. В., Ульянов В. Ю. Возможность терапии соединительнотканных структур коленных суставов с посттравматическим остеоартрозом на экспериментальной модели. В сб.: Травматология, ортопедия и нейрохирургия: междисциплинарные аспекты. Саратов, 2019; 54–7).
- Von der Mark K, Kirsch T, Nerlich A, et al. Type-X collagen-synthesis in human osteoarthritic cartilage — indication of chondrocyte hypertrophy. Arthritis Rheum 1992; 35 (7): 806– 11. DOI: 10.1002 / art. 1780350715.
- Hoshiyama Y, Otsuki S, Oda S, et al. Chondrocyte clusters adjacent to sites of cartilage degeneration have characteristics of progenitor cells. J Orthop Re 2015; 33 (4): 548–55. DOI: 10.1002 / jor. 22782.
- Sun MM, Beier F. Chondrocyte hypertrophy in skeletal development, growth, and disease. Birth Defects Res C Embryo Today 2014; 102 (1): 74–82. DOI: 10.1002 / bdrc. 21062.
- Wang LJ, Huang JH, Moore DC, et al. SHP2 regulates the osteogenic fate of growth plate hypertrophic chondrocytes. Sci Rep Uk 2017; 7 (1): 12699. DOI: 10.1038 / s41598‑017‑12767‑9.
- Van der Kraan PM, van den Berg WB. Chondrocyte hypertrophy and osteoarthritis: Role in initiation and progression of cartilage degeneration? Osteoarthr Cartilage 2012; 20 (3): 223–32. DOI: 10.1016 / j. joca. 2011.12.003.
- Ludin A, Sela JJ, Schroeder A, et al. Injection of vascular endothelial growth factor into knee joints induces osteoarthritis in mice. Osteoarthr Cartil 2013; 21: 491–7.
- Merz D, Liu R, Johnson K, et al. IL-8 / CXCL8 and growth-related oncogene alpha / CXCL1 induce chondrocyte hypertrophic differentiation. J Immunol 2003; 171 (8): 4406–15. DOI: 10.4049 / jimmunol. 171.8.4406.
- Jeon OH, Kim C, Laberge RM, et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med 2017; 23: 775–81.
- Zhang W, Jones A, Doherty M. Does paracetamol (acetaminophen) reduce the pain of osteoarthritis? A metaanalysis of randomised controlled trials. Ann Rheum Dis 2004; 63 (8): 901–7. DOI: 10.1136 / ard. 2003.018531.
- Crofford LJ. Use of NSAIDs in treating patients with arthritis. Arthritis Res Ther 2013; 15 (3): S2. DOI: 10.1186 / ar4174.
- Laine L, White WB, Rostom A, et al. M. COX-2 selective inhibitors in the treatment of osteoarthritis. Semin Arthritis Rheum 2008; 38 (3): 165–87. DOI: 10.1016 / j. semarthrit. 2007.10.004.
- Petersson IF, Boegard T, Svensson BD. Changes in cartilage and bone metabolism identified by serum markers in early osteoarthritis of the knee joint. Br J Rheumatol 1998; 37 (1): 46–50. DOI: 10.1093 / rheumatology / 37.1.46.
- Radin EL, Rose RM. Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res 1986; 213: 34–40.
- Buckland-Wright C. Subchondral bone changes in hand and knee osteoarthritis detected by radiography. Osteoarthritis Cartilage 2004; 12 (Suppl A): S10‑S19. DOI: 10.1016 / j. joca. 2003.09.007.
- Burr DB, Radin EL. Microfractures and microcracks in subchondral bone: are they relevant to osteoarthrosis. Rheum Dis Clin North Am 2003; 29 (4): 675–85. DOI: 10.1016 / s0889857x (03) 00061–9.
- Guevremont M, Martel-Pelletier J, Massicotte F, et al. Human adult chondrocytes express hepatocyte growth factor (HGF) isoforms but not HgF: potential implication of osteoblasts on the presence of HGF in cartilage. J Bone Miner Res 2003; 18 (6): 1073–81. DOI: 10.1359 / jbmr. 2003.18.6.1073.