Review on nearest level modulation methods based on MMC
Автор: Zhang Ruirui
Журнал: Бюллетень науки и практики @bulletennauki
Рубрика: Технические науки
Статья в выпуске: 6 т.8, 2022 года.
Бесплатный доступ
In view of the relevant situation of offshore wind power research, development and construction at home and abroad, as well as the energy crisis facing the world, we have ushered in a new opportunity and outbreak period for the development of new energy. Therefore, higher requirements are placed on the power supply, and the key technology for the design of offshore wind power flexible DC transmission high-power converters is proposed. The Modular Multi-level Converter (MMC) topology can only use a lower switching frequency to obtain higher power Waveform quality. The output voltage waveform can effectively reduce the switching loss and filter capacity and improve the efficiency and economy of the converter. Among them, the method based on Level Modulation (NLM) is usually the preferred method. This paper introduces the topology and working principle of the modular multilevel converter (MMC) in detail and describes the improved modulation method for NLM in detail. The advantages, disadvantages and application occasions of different improved modulation techniques are summarized, which provides a reference for the engineering application of MMC.
Increase level number, modular multilevel converter, nearest-level modulation
Короткий адрес: https://sciup.org/14124430
IDR: 14124430 | DOI: 10.33619/2414-2948/79/47
Список литературы Review on nearest level modulation methods based on MMC
- 倪云林, 辛华龙, & 刘勇. (2009). 我国海上风电的发展与技术现状分析. 能源工程, 4(5).
- 时智勇, 王彩霞, & 李琼慧. (2020). “十四五” 中国海上风电发展关键问题. 中国电力, 53(7), 8-17.
- 黄碧斌, 张运洲, & 王彩霞. (2020). 中国 “十四五” 新能源发展研判及需要关注的问题. 中国电力, 53(1), 1-9.
- 时智勇, 王彩霞, & 李琼慧. (2020). “十四五” 中国海上风电发展关键问题. 中国电力, 53(7), 8-17.
- Breuer, W., Povh, D., Retzmann, D., Teltsch, E., & Lei, X. (2004, October). Role of HVDC and FACTS in future Power Systems. In CIGER Symposium, Shang Hai.
- Dorn, J. (2007). Novel voltage-sourced converters for HVDC and FACTS applications. In Conf. Rec. cigre, OSAKA, 2007.
- Westereweller, T. (2010). Trans bay cable-world's first HVDC system using multilevel voltage-sourced converter. CIGRE Session 2010.
- Clark, H. K., El-Gasseir, M. M., Epp, H. K., & Edris, A. A. (2008, March). The application of segmentation and grid shock absorber concept for reliable power grids. In 2008 12th International Middle-East Power System Conference (pp. 34-38). IEEE. https://doi.org/10.1109/MEPCON.2008.4562303
- Lesnicar, A., & Marquardt, R. (2003, June). An innovative modular multilevel converter topology suitable for a wide power range. In 2003 IEEE Bologna Power Tech Conference Proceedings, (Vol. 3, pp. 6-pp). IEEE. https://doi.org/10.1109/PTC.2003.1304403
- 蒋冠前, 李志勇, 杨慧霞, & 杨静. (2015). 柔性直流输电系统拓扑结构研究综述. 电力 系统保护与控制, 43(15), 145-153.
- 肖晃庆, 徐政, 薛英林, & 唐庚. (2014). 多端柔性直流输电系统的启动控制策略. 高电 压技术, 40(8), 2550-2557.
- 魏晓光 (2006). 汤广福. 基于电压源换流器的高压直流输电系统离散化建模与仿真研 究. 电网技术, 30(20), 34-39.
- 管敏渊 (2013). 基于模块化多电平换流器的直流输电系统控制策略研究. 杭州: 浙江 大学.
- Tang, G., He, Z., Pang, H., Huang, X., & Zhang, X. P. (2015). Basic topology and key devices of the five-terminal DC grid. CSEE Journal of Power and Energy Systems, 1(2), 22-35. https://doi.org/10.17775/CSEEJPES.2015.00016
- Zhang, Y., Adam, G. P., Lim, T. C., Finney, S. J., & Williams, B. W. (2010, October). Voltage source converter in high voltage applications: Multilevel versus two-level converters. In 9th IET International Conference on AC and DC Power Transmission (ACDC 2010) (pp. 1-5). IET. https://doi.org/10.1049/cp.2010.0995
- Wu, D., & Peng, L. (2016). Characteristics of nearest level modulation method with circulating current control for modular multilevel converter. IET Power Electronics, 9(2), 155-164.
- Wang, W., Ma, K., & Cai, X. (2021). Flexible Nearest Level Modulation for Modular Multilevel Converter. IEEE Transactions on Power Electronics, 36(12), 13686-13696. https://doi.org/10.1109/TPEL.2021.3089706
- Li, Z., Wang, P., Zhu, H., Chu, Z., & Li, Y. (2012). An improved pulse width modulation method for chopper-cell-based modular multilevel converters. IEEE Transactions on Power Electronics, 27(8), 3472-3481. https://doi.org/10.1109/TPEL.2012.2187800
- Perez, M. A., Bernet, S., Rodriguez, J., Kouro, S., & Lizana, R. (2014). Circuit topologies, modeling, control schemes, and applications of modular multilevel converters. IEEE transactions on power electronics, 30(1), 4-17. https://doi.org/10.1109/TPEL.2014.2310127
- Debnath, S., Qin, J., Bahrani, B., Saeedifard, M., & Barbosa, P. (2014). Operation, control, and applications of the modular multilevel converter: A review. IEEE transactions on power electronics, 30(1), 37-53. https://doi.org/10.1109/TPEL.2014.2309937
- Meshram, P. M., & Borghate, V. B. (2014). A simplified nearest level control (NLC) voltage balancing method for modular multilevel converter (MMC). IEEE Transactions on Power Electronics, 30(1), 450-462. https://doi.org/10.1109/TPEL.2014.2317705
- Rodrigues, S., Papadopoulos, A., Kontos, E., Todorcevic, T., & Bauer, P. (2016). Steadystate loss model of half-bridge modular multilevel converters. IEEE Transactions on Industry Applications, 52(3), 2415-2425. https://doi.org/10.1109/TIA.2016.2519510
- Elserougi, A. A., Massoud, A. M., & Ahmed, S. (2017). Arrester-less DC fault current limiter based on pre-charged external capacitors for half-bridge modular multilevel converters. IET Generation, Transmission & Distribution, 11(1), 93-101.
- Li, R., Fletcher, J. E., & Williams, B. W. (2016). Influence of third harmonic injection on modular multilevel converter-based high-voltage direct current transmission systems. IET Generation, Transmission & Distribution, 10(11), 2764-2770.
- Zhou, W., Dong, Y., Yang, H., Li, W., He, X., Hu, J., & Yuan, X. (2016). Common-mode voltage injection-based nearest level modulation with loss reduction for modular multilevel converters. IET Renewable Power Generation, 10(6), 798-806.
- 肖浩, 高桂革 (2015). 曾宪文, 等. 改进的最近电平逼近调制策略在模块化多电平变流 器中的应用. 上海电机学院学报, 18(2), 70-76.
- Si, G., Zhu, J., Lei, Y., Jia, L., & Zhang, Y. (2019). An enhanced level‐increased nearest level modulation for modular multilevel converter. International Transactions on Electrical Energy Systems, 29(1), e2669. https://doi.org/10.1002/etep.2669
- Nguyen, M. H., & Kwak, S. (2020). Predictive nearest-level control algorithm for modular multilevel converters with reduced harmonic distortion. IEEE Access, 9, 4769-4783. https://doi.org/10.1109/ACCESS.2020.3048156
- Nguyen, M. H., & Kwak, S. (2020). Nearest-level control method with improved output quality for modular multilevel converters. IEEE Access, 8, 110237-110250. https://doi.org/10.1109/ACCESS.2020.3001587
- Lin, L., Lin, Y., He, Z., Chen, Y., Hu, J., & Li, W. (2016). Improved nearest-level modulation for a modular multilevel converter with a lower submodule number. IEEE Transactions on Power Electronics, 31(8), 5369-5377. https://doi.org/10.1109/TPEL.2016.2521059
- Hu, P., & Jiang, D. (2014). A level-increased nearest level modulation method for modular multilevel converters. IEEE Transactions on Power Electronics, 30(4), 1836-1842. https://doi.org/10.1109/TPEL.2014.2325875
- Kurtoğlu, M., & Vural, A. M. (2022). A Novel Nearest Level Modulation Method with Increased Output Voltage Quality for Modular Multilevel Converter Topology. International Transactions on Electrical Energy Systems, 2022. https://doi.org/10.1155/2022/2169357
- Sotorrio-Ruiz, P. J., Sanchez-Pacheco, F. J., Perez-Hidalgo, F. M., & Heredia-Larrubia, J.R. (2017). Modulation of a trapezoidal signal: improving signal quality and reducing costs in power inverters. IET Power Electronics, 10(5), 568-576.