Rhythmical changes of a level nitric oxide (NO) in roots etiolated seedlings of pea ( Pisum sativum L.) and influence of exogenous calcium

Автор: Glyanko A.K., Ischenko A.A.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 4 т.10, 2014 года.

Бесплатный доступ

Studied time dynamics (during 60 mines) a level oxide nitric (NO) in cross cuts of roots 2 - day etiolated seedlings of pea sowing ( Pisum sativum L.) by use of fluorescent probe DAF-2DA and a fluorescent microscope depending on action exogenous calcium (Ca 2+). During an exposition of seedlings on water, solution CaCl 2 are shown fluctuation in level NO in roots - his increase and decrease that testifies to the certain rhythm in generation NO. Exogenous factors (Ca 2+) change time dynamics of level NO in comparison with variant “water”. Ca 2+chelate EGTA removes action exogenous calcium on rhythmical change of a level NO in roots. Results are discussed in aspect of close interference of signaling systems and molecules (Ca 2+, NO, Н 2О 2).

Еще

Pisum sativum l, calcium (ca2+), calcium chelate (egta), fluorescent probe, nitric oxide (no)

Короткий адрес: https://sciup.org/14323911

IDR: 14323911

Список литературы Rhythmical changes of a level nitric oxide (NO) in roots etiolated seedlings of pea ( Pisum sativum L.) and influence of exogenous calcium

  • Besson-Bard A., Pugin A. and Wendehenne D. (2008) New insights into nitric oxide signaling in plants. Annu. Rev. Plant Biol., 59, 21-39
  • Besson-Bard A., Courtois C., Gauthier A., Dahan J., Dobrowolska G., Jeandroz S., Pugin A. and Wendehenne D. (2008a) Nitric oxide in plants production and cross-talk with Ca2+ signaling. Mol. Plant, 1, 218-228
  • Bogdan C. (2001) Nitric oxide and the regulation of gene expression. Trends Cell Biol., 11, 66-75
  • Сlementi E. (1998) Role of nitric oxide and its intracellular signaling pathways in the control of Ca2+ homeostasis. Biochem. Pharmacol., 55, 713-718
  • Corpas F.J., Barroso J.B., Carreras A., Valderrama R., Palma J.M., Leon A.V., Sandalio L.M. and del Rio L.A. (2006) Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta, 224, 246-254
  • Courtois C., Besson A., Dahan J., Bourque S., Dobrowolska G., Pugin A. and Wendehenne D. J. (2008) Nitric oxide signaling in plants: interplays with Ca2+ and protein kinases. Exp. Bot., 59, 155-163
  • Denisenko V.Yu. and Kuz’mina T.I. (2013) On the problem of identification of intracellular signaling pathways. Biochemistry (Moskow), 78, 431-433
  • Detari L. and Karcagi V. (1984) Biorhithms (Ed. V.B. Chernyshov). M.: Mir Press, 160 p
  • Dmitriev A.P. (2004) The signaling role of nitric oxide in plants. Cytol. Genet. (Ukraine), 38, 67-75
  • Freschi L. (2013) Nitric oxide and phytohormone interactions: current status and perspectives. Front. Plant Sci., 4, Article 398
  • Garcia-Mata C., Gay R., Sokolovski S., Hills A., Lamattina L. and Blatt M.R. (2003) Nitric oxide regulates K+ and Cl-channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proc. Natl. Acad. Sci. USA, 100, 11116-11121
  • Glyan’ko A.K., Mitanova N.B. and Stepanov A.V. (2010) The physiological role of nitric oxide (NO) in plants. The Bulletin of Kharkiv National Agrarian University. Series Biology, 1 (19), 6-20
  • Glyan‘ko A.K. and Ischenko A.A. (2013) Influence of rhizobial inoculation and calcium ions on the NADPH oxidase activity in roots of etiolated pea seedlings. Appl. Biochem. Microbiol., 49, 215-219
  • Glyan’ko A.K. (2013) Initiation of nitric oxide (NO) synthesis in roots of etiolated seedlings of pea (Pisum sativum L.) under the influence of nitrogen-containing compounds. Biochemistry (Moskow), 78, 471-476
  • Glyan’ko A.K., Ischenko A.A., Stepanov A.V., Vasil’eva G.G. and Projdakova O.A. (2013) Dynamics of synthesis nitric oxide (NO) in roots etiolated seedlings of pea (Pisum sativum L.). The Bulletin of Kharkiv National Agrarian University. Series Biology, 3 (30), 32-38
  • Jeandroz S., Lamotte O., Astier J., Rasul S., Trapet P., Besson-Bard A., Bourque S., Nicolas-Frances V., Berkowitz G.A. and Wendehenne D. (2013) There’s more to the picture than meets the eye: nitric oxide cross talk with Ca2+ signaling. Plant Physiol., 163, 459-470
  • Kimura S., Kaya H., Kawarazaki T., Hiraoka G., Senzaki E., Michikawa M., Kuchitsu K. (2012) Protein phosphorylation is a prerequisite for the Ca2+-dependent activation of Arabidopsis NADPH oxidases and may function as a trigger for the positive feedback regulation of Ca2+ and reactive oxygen species. Biochim. Biophys. Acta, 1823, 398-405
  • Kolupaev Yu.Ye. and Karpets Yu.V. (2009) Participation of nitrogen oxide (NO) in transduction of abiotic stressors signals in plants. The Bulletin of Kharkiv National Agrarian University. Series Biology, 3 (18), 6-19
  • Kolupaev Yu. Ye. (2007) Calcium and stress reactions of plants. The Bulletin of Kharkiv National Agrarian University. Series Biology, 3 (10), 24-41
  • Lamotte O., Gould K., Lecourieux D., Sequeira-Legrand A., Lebrun-Garcia A., Durner J., Pugin A., Mori I.C. and Schroeder J.I. (2004) Analysis of nitric oxide signaling functions in tobacco by the elicitor cryptogein. Plant Physiol., 135, 516-529
  • Marino D., Dunand C., Puppo A. and Pauly N. (2012) A burst of plant NADPH oxidase. Trends Plant Sci., 17, 9-15
  • Meilhoc E., Boscan A., Bruand C., Puppo A. and Brouquisse R. (2011) Nitric oxide in legume-rhizobium symbiosis. Plant Sci., 181, 573-581
  • Medvedev C.C. (2010) Calcium signaling systems. In: Signaling in cells (Ed. A.N. Grechkin). Kazan: FEN Press, pp. 26-36
  • Miller G., Schlauch K., Tam R., Cortes D., Torres M.A., Shulaev V., Dangi J.L. and Mittler R. (2009) The plant NADPH oxidase RBohD mediates rapid systemic in response to diverse stimuli. Sci. Signal., 2(84), ra 45
  • Mittler R., Vanderauwera S., Suzuki N., Miller G., Tognetti V.B., Vandepoele K., Gollery M., Shulaev V. and Van Breusegem F. (2011) ROS signaling: the new wave? Trends Plant Sci., 16, 300-309
  • Nakatsuboa A., Kojimaa H., Kikuchia K., Nagoshib H., Maedaa D., Imaia Y., Irimuraa T., Naganoa T. (1998) Direct evidence of nitric oxide production from bovine aortic endothelial cells using new fluorescence indicators: diaminofluoresceins. FEBS Letters, 427, 263-266
  • Neill S., Bright J., Desikan R., Hancock J., Harrison J. and Wilson I. (2008) Nitric oxide evolution and perception. J. Exp. Bot., 59, 25-35
  • Oldroyd G.E.D. and Downie J.A. (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu. Rev. Plant Biol., 59, 519-546
  • Sanchez C., Cabrera J.J., Gates A., Bedmar E.J., Richardson D.J. and Delgado M.J. (2011) Nitric oxide detoxification in the rhizobium-legume symbiosis. Biochem. Soc. Transactions, 39, 184-188
  • Steinhorst L. and Kudla J. (2013) Calcium and reactive oxygen species rule the waves of signaling. Plant Physiol., 163, 471-485
  • Tarchevsky I.A. (2002) Plant cell signaling systems (Ed. A.N. Grechkin). M: Nauka, 294 p
  • Vandelle E., Poinsson B., Wendehenne D., Bentejac M. and Pugin A. (2006) Integrated signaling network involving calcium, nitric oxide, and active oxygen species but not mitogen-activated protein kinases in BcPG1-elicited grapevine defenses//Mol. Plant-Microbe Interact.,19, 429-440
  • Wang P., Du Y., Li Y., Ren D. and Song C.-P. (2010) Hydrogen peroxide -mediated activation of MAP kinase 6 modulates nitric oxide biosynthesis and signal transduction in Arabidopsis. Plant Cell, 22, 2981-2998
  • Whalley H.J. and Knight M.R. (2013) Calcium signatures are decoded by plants to give specific gene responses. New Phytol. 197, 690-693
  • Yun B.W., Feechan A., Yin M., Saidi N.B., Le Bihan T., Yu M., Moore J.W., Kang J.G., Kwon E., Spoel S.H., Pallas J.A. and Loake G.J. (2011) S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature, 478, 264-268
Еще
Статья научная