Роль генов семейства Argonaute в эффектах активатора РНК-интерференции эноксацина на продолжительность жизни Drosophila melanogaster
Автор: Пакшина Н.Р., Яковлева Д.В., Уляшева Н.С., Прошкина Е.Н., Москалев А.А.
Журнал: Известия Коми научного центра УрО РАН @izvestia-komisc
Рубрика: Научные статьи
Статья в выпуске: 6 (64), 2023 года.
Бесплатный доступ
Эпигенетические механизмы играют ведущую роль в регуляции генной экспрессии и координации биологических процессов, влияя на скорость старения и продолжительность жизни организма. Важную роль в реализации этих механизмов играют малые РНК, которые подавляют активность своих мишеней путем РНК-интерференции и обеспечивают противовирусную защиту. Эноксацин является уникальным индуктором факторов РНК-интерференции с потенциальной геропротекторной активностью. Установлено, что его эффекты опосредованы микроРНК, но возможно участие и других видов некодирующих РНК. В данном исследовании мы изучили влияние эноксацина на продолжительность жизни Drosophila melanogaster и впервые проанализировали вклад в его эффект генов семейства Argonaute, которые специфично обеспечивают биогенез и функционирование микроРНК, киРНК и пивиРНК.
Малые рнк, рнк-интерференция, эноксацин, продолжительность жизни, старение, гены argonaute, drosophila melanogaster
Короткий адрес: https://sciup.org/149143620
IDR: 149143620 | DOI: 10.19110/1994-5655-2023-6-103-114
Список литературы Роль генов семейства Argonaute в эффектах активатора РНК-интерференции эноксацина на продолжительность жизни Drosophila melanogaster
- Yao, Q. The roles of microRNAs in epigenetic regulation / Q. Yao, Y. Chen, X. Zhou // Curr Opin Chem Biol. – 2019. – Vol. 51. – P. 11-17.
- Yang, J. H. Loss of epigenetic information as a cause of mammalian aging / J. H. Yang, M. Hayano, P. T. Griffin [et al.] // Cell. – 2023. – Vol. 186, № 2. – P. 305-326.e27.
- Sen, P. Epigenetic mechanisms of longevity and aging / P. Sen, P. P. Shah, R. Nativio [et al.] // Cell. – 2016. – Vol. 166, № 4. – P. 822-839.
- Huang, X. A. A major epigenetic programming mechanism guided by piRNAs / X. A. Huang, H. Yin, S. Sweeney [et al.] // Dev Cell. – 2013. – Vol. 24, № 5. – P. 502-516.
- Duempelmann, L. Small RNAs in the transgenerational inheritance of epigenetic information / L. Duempelmann, M. Skribbe, M. Bühler // Trends Genet. – 2020. – Vol. 36, № 3. – P. 203-214.
- Sankrityayan, H. Diabetic nephropathy: The regulatory interplay between epigenetics and microRNAs / H. Sankrityayan, Y. A. Kulkarni, A. B. Gaikwad // Pharmacol Res. – 2019. – Vol. 141. – P. 574-585.
- Iorio, M.V. Interplay between microRNAs and the epigenetic machinery: an intricate network / M. V. Iorio, C. Piovan, C. M. Croce // Biochim Biophys Acta. – 2010. – Vol. 1799, № 10-12. – P. 694-701.
- Moazed, D. Small RNAs in transcriptional gene silencing and genome defence / D. Moazed // Nature. – 2009. – Vol. 457, № 7228. – P. 413-420.
- Peters, L. Argonaute proteins: mediators of RNA silencing / L. Peters, G. Meister // Mol Cell. – 2007. – Vol. 26, № 5. – P. 611-623.
- Jia, D. D. The regulatory function of piRNA/PIWI complex in cancer and other human diseases: The role of DNA methylation / D. D. Jia, H. Jiang, Y. F. Zhang [et al.] // Int J Biol Sci. – 2022. – Vol. 18, № 8. – P. 3358-3373.
- Kim, V.N. Biogenesis of small RNAs in animals / V.N. Kim, J. Han, M.C. Siomi // Nat. Rev. Mol. Cell Biol. – 2009. – Vol. 10. – P. 126-139.
- Proshkina, E. N. Genome-Protecting Compounds as Potential Geroprotectors / E. N. Proshkina, M. V. Shaposhnikov, A. A. Moskalev // Int J Mol Sci. – 2020. – Vol. 21, № 12. – P. 4484.
- Memari, F. Epigenetics and Epi-miRNAs: Potential markers/ therapeutics in leukemia / F. Memari, Z. Joneidi, B. Taheri [et al.] // Biomed Pharmacother. – 2018. – Vol. 106. – P. 1668-1677.
- Cheng, Y. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials / Y. Cheng, C. He, M. Wang [et al.] // Signal Transduct Target Ther. – 2019. –Vol. 4. – P. 62.
- Audia, J. E. Histone modifications and cancer / J. E. Audia, R. M. Campbell // Cold Spring Harb Perspect Biol. – 2016. – Vol. 8, № 4. – P. a019521.
- Yang, X. Targeting DNA methylation for epigenetic therapy / X. Yang, F. Lay, H. Han [et al.] // Trends Pharmacol Sci. – 2010. – Vol. 31, № 11. – P. 536-546.
- Siklos, M. Therapeutic targeting of chromatin: status and opportunities / M. Siklos, S. Kubicek // FEBS J. – 2022. – Vol. 289, № 5. – P. 1276-1301.
- Morera, L. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy / L. Morera, M. Lübbert, M. Jung // Clin Epigenetics. – 2016. – Vol. 8. – P. 57.
- Dai, E. Epigenetic modulation of antitumor immunity for improved cancer immunotherapy / E. Dai, Z. Zhu, S. Wahed [et al.] // Mol Cancer. – 2021. – Vol. 20, № 1. – P. 171.
- Cao, J. Cancer epigenetics, tumor immunity, and immunotherapy / J. Cao, Q. Yan // Trends Cancer. – 2020. – Vol. 6, № 7. – P. 580-592.
- Felicetti, T. Modulating microRNA processing: enoxacin, the progenitor of a new class of drugs / T. Felicetti, V. Cecchetti, G. Manfroni // J Med Chem. – 2020. – Vol. 63, № 21. – P. 12275-12289.
- Zhang, S. Targeting microRNAs with small molecules: from dream to reality / S. Zhang, L. Chen, E. J. Jung [et al.] // Clin Pharmacol Ther. – 2010. – Vol. 87, № 6. – P. 754-758.
- Shan, G. A small molecule enhances RNA interference and promotes microRNA processing / G. Shan, Y. Li, J. Zhang [et al.] // Nat Biotechnol. – 2008. – Vol. 26, № 8. – P. 933-940.
- Zhao, R. Designing strategies of small-molecule compounds for modulating non-coding RNAs in cancer therapy / R. Zhao, J. Fu, L. Zhu [et al.] // J Hematol Oncol. – 2022. – Vol. 15, № 1. – P. 14.
- Wang, K. Epigenetic regulation of aging: implications for interventions of aging and diseases / K. Wang, H. Liu, Q. Hu [et al.] // Signal Transduct Target Ther. – 2022. – Vol. 7, № 1. – P. 374.
- Sousa, E. Enoxacin inhibits growth of prostate cancer cells and effectively restores microRNA processing / E. Sousa, I. Graca, T. Baptista [et al.] // Epigenetics. – 2013. – Vol. 8, № 5. – P. 548-558.
- Melo, S.A. Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing / S. A. Melo, A. Villanueva, C. Moutinho [et al.] // Proc Natl Acad Sci USA. – 2011. – Vol. 108, № 11. – P. 4394-4399.
- Abell, N. S. Click quantitative mass spectrometry identifies PIWIL3 as a mechanistic target of RNA interference activator enoxacin in cancer cells / N. S. Abell, M. Mercado, T. Caneque [et al.] // J Am Chem Soc. – 2017. – Vol. 139, № 4. – P. 1400-1403.
- Marco, A. Regulatory RNAs in the light of Drosophila genomics / A. Marco // Brief Funct Genomics. – 2012. – Vol. 11, № 5. – P. 356-365.
- Xia, B. Transgenerational programming of longevity and reproduction by post-eclosion dietary manipulation in Drosophila / B. Xia, J.S. de Belle // Aging. – 2016. – Vol. 8, № 5. – P. 1115–1134.
- Hilton, J. F. An algorithm for conducting exact Smirnov tests / J. F. Hilton, C. R. Mehta, N. R. Patel // Computational Statistics & Data Analysis. – 1994. – Vol. 17, № 4. – P. 351–361.
- Martinez, R. L. A pretest for choosing between logrank and wilcoxon tests in the two-sample problem / R. L. M. C. Martinez, J. D. Naranjo // Metron. – 2012. – Vol. 68, № 2. – P. 111–125.
- Wang, C. Statistical methods for testing effects on «maximum lifespan» / C. Wang, Q. Li, D. T. Redden [et al.] // Mech Ageing Dev. – 2004. – Vol. 125, № 9. – P. 629-632.
- Armstrong, R.A. When to use the Bonferroni correction / R.A. Armstrong // Ophthalmic and Physiological Optics. – 2014. – Vol. 34, № 5. – P. 502–508.
- Han, S. K. OASIS 2: online application for survival analysis 2 with features for the analysis of maximal lifespan and healthspan in aging research / S. K. Han, D. Lee, H. Lee [et al.] // Oncotarget. – 2016. – Vol. 7, № 35. – P. 56147-56152.
- Luo, X. Enoxacin inhibits proliferation and invasion of human osteosarcoma cells and reduces bone tumour volume in a murine xenograft model / X. Luo, X. Liu, Q. Tao [et al.] // Oncol Lett. – 2020. – Vol. 20, № 2. – P. 1400-1408.
- Valianatos, G. A small molecule drug promoting miRNA processing induces alternative splicing of MdmX transcript and rescues p53 activity in human cancer cells overexpressing MdmX protein / G. Valianatos, B. Valcikova, K. Growkova [et al.] // PLoS One. – 2017. – Vol. 12, № 10. – P. e0185801.
- Nishi, K. Enoxacin with UVA irradiation induces apoptosis in the AsPC1 human pancreatic cancer cell line through ROS generation / K. Nishi, M. Kato, S. Sakurai [et al.] // Anticancer Res. – 2017. – Vol. 37, № 11. – P. 6211-6214.
- Cao, S. RNA helicase DHX9 may be a therapeutic target in lung cancer and inhibited by enoxacin / S. Cao, R. Sun, W. Wang [et al.] // Am J Transl Res. – 2017. – Vol. 9, № 2. – P. 674-682.
- Ramirez-Moya, J. Impaired microRNA processing by DICER1 downregulation endows thyroid cancer with increased aggressiveness / J. Ramirez-Moya, L. Wert-Lamas, G. Riesco-Eizaguirre [et al.] // Oncogene. – 2019. – Vol. 38, № 27. – P. 5486-5499.
- McDonnell, A. M. Enoxacin and epigallocatechin gallate (EGCG) act synergistically to inhibit the growth of cervical cancer cells in culture / A. M. McDonnell, H. M. Pyles, E. S. Diaz-Cruz [et al.] // Molecules. – 2019. – Vol. 24, № 8. – P. 1580.
- Itoh, A. Enoxacin up-regulates microRNA biogenesis and down-regulates cytotoxic CD8 T-cell function in autoimmune cholangitis / A. Itoh, D. Adams, W. Huang [et al.] // Hepatology. – 2021. – Vol. 74, № 2. – P. 835-846.
- Rocha, A. L. Enoxacin induces oxidative metabolism and mitigates obesity by regulating adipose tissue miRNA expression / A. L. Rocha, T. I. de Lima, G. P. de Souza [et al.] // Sci Adv. – 2020. – Vol. 6, № 49. – P. eabc6250.
- Emde, A. Dysregulated miRNA biogenesis downstream of cellular stress and ALS-causing mutations: a new mechanism for ALS / A. Emde, C. Eitan, L. L. Liou [et al.] // EMBO J. – 2015. – Vol. 34, № 21. – P. :2633-2651.
- McDonnell, A. M. Enoxacin and epigallocatechin gallate (EGCG) act synergistically to inhibit the growth of cervical cancer cells in culture / A. M. McDonnell, H. M. Pyles, E. S. Diaz-Cruz [et al.] // Molecules. – 2019. – Vol. 24, № 8. – P. 1580.
- Xu, Y.P. Zika virus infection induces RNAi-mediated antiviral immunity in human neural progenitors and brain organoids / Y.P. Xu, Y. Qiu, B. Zhang [et al.] // Cell Res. – 2019. – Vol. 29, № 4. – P. 265-273.
- Ahmadi, A. In silico analysis suggests the RNAi-enhancing antibiotic enoxacin as a potential inhibitor of SARSCoV-2 infection / A. Ahmadi, S. Moradi // Sci Rep. – 2021. – Vol. 11, №1. – P. 10271.
- Lyu, B. Enoxacin shows broad-spectrum antiviral activity against diverse viruses by enhancing antiviral RNA interference in insects / B. Lyu, C. Wang, Y. Bie [et al.] // J Virol. – 2022. – Vol. 96, № 4. – P. e0177821.
- Pinto, S. Enoxacin extends lifespan of C. elegans by inhibiting miR-34-5p and promoting mitohormesis / S. Pinto, V. N. Sato, E. A. De-Souza [et al.] // Redox Biol. – 2018. – Vol.18. – P. 84-92.
- Lewis, S.H. Duplication and diversification of Dipteran Argonaute genes, and the evolutionary divergence of piwi and Aubergine / S. H. Lewis, H. Salmela, D. J. Obbard // Genome Biol Evol. – 2016. – Vol. 8, №3. – P. 507-518.
- Malone, C.D. Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary / C.D. Malone, J. Brennecke, M. Dus [et al.] // Cell. – 2009. – Vol. 137, № 3. – P. 522-535.
- Nishida, K.M. Gene silencing mechanisms mediated by Aubergine piRNA complexes in Drosophila male gonad / K. M. Nishida, K. Saito, T. Mori [et al.] // RNA. – 2007. – Vol. 13, № 11. – P. 1911-1922.
- Perera, B. P. U. Somatic expression of piRNA and associated machinery in the mouse identifies short, tissue-specific piRNA / B. P. U. Perera, Z. T. Tsai, M. L. Colwell [et al.] // Epigenetics. – 2019. – Vol. 14, № 5. – P. 504-521.
- Story, B. Defining the expression of piRNA and transposable elements in Drosophila ovarian germline stem cells and somatic support cells / B. Story, X. Ma, K. Ishihara [et al.] // Life Sci Alliance. – 2019. – Vol. 2, № 5. – P. e201800211.