Роль кишечной микробиоты при иммунотерапии рака толстой кишки

Автор: Хакимова Г.Г., Трякин А.А., Заботина Т.Н., Цуканов А.С., Алиев В.А., Гуторов С.Л.

Журнал: Злокачественные опухоли @malignanttumors

Рубрика: Обзоры и аналитика

Статья в выпуске: 2 т.9, 2019 года.

Бесплатный доступ

Считается, что генетические факторы, дисфункция иммунной системы, хроническое воспаление и дисбиоз кишечной микробиоты (КМ) являются частью патогенеза колоректального рака (КРР). Положительная роль регуляции КМ при лечении воспалительных заболеваний кишечника определяется снижением роста патогенных бактерий и увеличением продукции противовоспалительных факторов. На сегодняшний день, современные данные свидетельствуют о том, что КM дисрегулирует иммунный ответ против опухоли в ее микроокружении, тем самым замедляя либо ускоряя эффективность противоопухолевой терапии. В клинических исследованиях сообщается о преимуществах терапии КРР с учетом состава КM, в отношении улучшения иммунного гомеостаза кишечника, функции эпителиального барьера и качества жизни. Между тем, специфическая сигнатура КМ может модулировать чувствительность к химио- и/или лучевой терапии и прогноз пациентов раком толстой кишки. В данной статье, мы представили общие проблемы терапии КРР, основанной на данных по КМ в сочетании с иммунотерапией, а также описали направления будущих перспектив.

Еще

Кишечная микробиота, иммунотерапия

Короткий адрес: https://sciup.org/140243822

IDR: 140243822   |   DOI: 10.18027/2224-5057-2019-9-2-5-11

Список литературы Роль кишечной микробиоты при иммунотерапии рака толстой кишки

  • Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, JemalA. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65 (2):87-108.
  • Fearon ER. Molecular genetics of colorectal cancer. Ann Rev Pathol. 2011;6 (1):479-507.
  • Jafri SH, Mills G. Lifestyle modification in colorectal cancer patients: an integrative oncology approach. Future Oncol. 2013;9 (2):207-218.
  • Okugawa Y, Grady WM, Goel A. Epigenetic alterations in colorectal cancer: emerging biomarkers. Gastroenterology. 2015;149 (5):1204-1225.
  • Lasry A, Zinger A, Ben-Neriah Y. Inflammatory networks underlying colorectal cancer. Nat Immunol. 2016;17 (3):230-240.
  • O'Keefe SJ. Diet, microorganisms and their metabolites, and colon cancer. Nat Rev Gastroenterol Hepatol. 2016;13 (12):691-706.
  • Jess T, Simonsen J, Jørgensen KT, Pedersen BV, Nielsen NM, Frisch M. Decreasing risk of colorectal cancer in patients with inflammatory bowel disease over 30 years. Gastroenterology. 2012;143 (2):375-381.
  • Jess T, Horváth-Puhó E, Fallingborg J, Rasmussen HH, Jacobsen BA. Cancer risk in inflammatory bowel disease according to patient phenotype and treatment: a Danish population-based cohort study. Am J Gastroenterol. 2013;108 (12):1869-1876.
  • Johnson CM, Wei C, Ensor JE, et al. Meta-analyses of colorectal cancer risk factors. Cancer Causes Control. 2013;24 (6):1207-1222.
  • Farraye FA, Odze RD, Eaden J, Itzkowitz SH. AGA medical position statement on the diagnosis and management of colorectal neoplasia in inflammatory bowel disease. Gastroenterology. 2010;138 (2):738-745.
  • Lasry A, Zinger A, Ben-Neriah Y. Inflammatory networks underlying colorectal cancer. Nat Immunol. 2016;17 (3):230-240.
  • Johnson CM, Wei C, Ensor JE, et al. Meta-analyses of colorectal cancer risk factors. Cancer Causes Control. 2013;24 (6):1207-1222.
  • Kostic AD, Chun E, Meyerson M, Garrett WS. Microbes and inflamma-tion in colorectal cancer. Cancer Immunol Res. 2013;1 (3):150-157.
  • Bruner SD, Jobin C. Intestinal microbiota in inflammatory bowel disease and carcinogenesis: implication for therapeutics. Clin Pharmacol Ther. 2016;99 (6):585-587.
  • Ijssennagger N, van der Meer R, van Mil SWC. Sulfide as a mucus barrier-breaker in inflammatory bowel disease? Trends Mol Med. 2016; 22 (3):190-199.
  • Uronis JM, Mühlbauer M, Herfarth HH, Rubinas TC, Jones GS, Jobin C. Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PLoS One. 2009;4 (6):e6026.
  • Li Y, Kundu P, Seow SW, et al. Gut microbiota accelerate tumor growth via c-jun and STAT3 phosphorylation in APC Min/+ mice. Carcino-genesis. 2012;33 (6):1231-1238.
  • Васильев А.Н. Трансплантация фекальной микробиоты: возможные терапевтические подходы и вопросы правового регулирования/А.Н. Васильев, Д.В. Горячев, Е.В. Гавришина и др.//Биопрепараты. Рецензируемый научно-практический журнал. -2015. -No 2 (54) -С. 15-23.
  • Yu J, Feng Q, Wong SH, et al. Metagenomic analysis of faecal micro-biome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut. 2017;66 (1):70-78.
  • Crawford PA, Gordon JI. From the cover: microbial regulation of intestinal radiosensitivity. Proc Natl Acad Sci. 2005;102 (37): 13254-13259.
  • Yu T, Guo F, Yu Y, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell. 2017; 170 (3):548-563.
  • Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015; 350 (6264):1079-1084.
  • Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1 -based immunotherapy against epithelial tumors. Science. 2018;359 (6371):91-97.
  • Ahmed S, Johnson K, Ahmed O, Iqbal N. Advances in the management of colorectal cancer: from biology to treatment. Int J Colorectal Dis. 2014;29 (9):1031-1042.
  • Field K, Lipton L. Metastatic colorectal cancer-past, progress and future. World J Gastroenterol. 2007;13 (28):3806-3815.
  • Dejea CM, Wick EC, Hechenbleikner EM, et al. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc Natl Acad Sci. 2014;111 (51):18321-18326.
  • Li S, Konstantinov SR, Smits R, Peppelenbosch MP. Bacterial biofilms in colorectal cancer initiation and progression. Trends Mol Med. 2017; 23 (1):18-30.
  • Sicard J-F, Le Bihan G, Vogeleer P, Jacques M, Harel J. Interactions of intestinal bacteria with components of the intestinal mucus. Front Cell Infect Microbiol. 2017;7:387.
  • Yu J, Feng Q, Wong SH, et al. Metagenomic analysis of faecal micro-biome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut. 2017;66 (1):70-78.
  • Nakatsu G, Li X, Zhou H, et al. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat Commun. 2015;6 (1):8727.
  • Huipeng W, Lifeng G, Chuang G, Jiaying Z, Yuankun C. The differences in colonic mucosal microbiota between normal individual and colon cancer patients by polymerase chain reaction-denaturing gradient gel electrophoresis. J Clin Gastroenterol. 2014;48 (2):138-144.
  • Warren RL, Freeman DJ, Pleasance S, et al. Co-occurrence of anaerobic bacteria in colorectal carcinomas. Microbiome. 2013;1 (1):16.
  • Wu N, Yang X, Zhang R, et al. Dysbiosis signature of fecal microbiota in colorectal cancer patients. Microb Ecol. 2013;66 (2):462-470.
  • Kahouli I, Tomaro-Duchesneau C, Prakash S. Probiotics in colorectal cancer (CRC) with emphasis on mechanisms of action and current perspectives. J Med Microbiol. 2013;62 (Pt_8):1107-1123.
  • Ito M, Kanno S, Nosho K, et al. Association of Fusobacterium nucleatum with clinical and molecular features in colorectal serrated pathway. Int J Cancer. 2015;137 (6):1258-1268.
  • Park CH, Han DS, Oh Y-H, Lee A-Reum, Lee Y-Ra, Eun CS. Role of Fusobacteria in the serrated pathway of colorectal carcinogenesis. Sci Rep. 2016;6 (1):25271.
  • Ye X, Wang R, Bhattacharya R, et al. Fusobacterium nucleatum sub-species Animalis influences proinflammatory cytokine expression and monocyte activation in human colorectal tumors. Cancer Prev Res. 2017;10 (7):398-409.
  • Nosho K, Sukawa Y, Adachi Y, et al. Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer. World J Gastroenterol. 2016;22 (2):557-566.
  • de Vries NL, Swets M, Vahrmeijer AL, Hokland M, Kuppen PJ. The immunogenicity of colorectal cancer in relation to tumor development and treatment. Int J Mol Sci. 2016;17 (7):E1030.
  • Nishino M, Ramaiya NH, Hatabu H, Hodi FS. Monitoring immune-checkpoint blockade: response evaluation and biomarker development. Nat Rev Clin Oncol. 2017;14 (11):655-668.
  • Stewart CA, Metheny H, Iida N, et al. Interferon-dependent IL-10 production by Tregs limits tumor Th17 inflammation. J Clin Invest. 2013;123 (11):4859-4874.
  • Pang Y, Gara SK, Achyut BR, et al. TGF-β signaling in myeloid cells is required for tumor metastasis. Cancer Discov. 2013;3 (8):936-951.
  • Qian X, Chen H, Wu X, Hu L, Huang Q, Jin Y. Interleukin-17 acts as double-edged sword in anti-tumor immunity and tumorigenesis. Cytokine. 2017;89:34-44.
  • Pitt JM, Vétizou M, Waldschmitt N, et al. Fine-tuning cancer immunotherapy: optimizing the gut microbiome. Cancer Res. 2016; 76 (16):4602-4607.
  • West NR, Powrie F. Immunotherapy not working? Check your micro-biota. Cancer Cell. 2015;28 (6):687-689.
  • Snyder A, Pamer E, Wolchok J. Immunotherapy. Could microbial therapy boost cancer immunotherapy? Science. 2015;350 (6264):1031-1032.
  • Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res. 2017;27 (1):109-118.
  • Geis AL, Fan H, Wu X, et al. Regulatory T-cell response to entero-toxigenic Bacteroides fragilis colonization triggers IL17-dependent colon carcinogenesis. Cancer Discov. 2015;5 (10):1098-1109.
  • Viaud S, Saccheri F, Mignot G, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013;342 (6161):971-976.
  • Baecher-Allan C, Viglietta V, Hafler DA. Human CD4+CD25+ regulatory T cells. Semin Immunol. 2004;16 (2):89-98.
  • Egen JG, Kuhns MS, Allison JP. CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol. 2002; 3 (7):611-618.
  • Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015; 350 (6264):1079-1084.
  • Dubin K, Callahan MK, Ren B, et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpointblockade-induced colitis. Nat Commun. 2016;7:10391.
  • Nishino M, Ramaiya NH, Hatabu H, Hodi FS. Monitoring immune-checkpoint blockade: response evaluation and biomarker development. Nat Rev Clin Oncol. 2017;14 (11):655-668.
  • Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359 (6371):97-103.
  • Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350 (6264):1084-1089.
  • Matson V, Fessler J, Bao R, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 2018;359 (6371):104-108.
  • Jin P, Wang K, Huang C, Nice EC. Mining the fecal proteome: from biomarkers to personalised medicine. Expert Rev Proteomics. 2017; 14 (5):445-459.
  • Ai L, Tian H, Chen Z, Chen H, Xu J, Fang JY. Systematic evaluation of supervised classifiers for fecal microbiotabased prediction of colorectal cancer. Oncotarget. 2017;8 (6):9546-9556.
  • Zhang MM, Cheng JQ, Xia L, et al. Monitoring intestinal microbiota profile: a promising method for the ultraearly detection of colorectal cancer. Med Hypotheses. 2011;76 (5):670-672.
  • Shah MS, Desantis TZ, Weinmaier T, et al. Leveraging sequence-based faecal microbial community survey data to identify a composite biomarker for colorectal cancer. Gut. 2018;67 (5):882-891.
  • Enq RR. How's your microbiota? Let's check your urine. Blood. 2015; 126 (14):1641-1642.
  • Ferreira RM, Pereira-Marques J, Pinto-Ribeiro I, et al. Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota. Gut. 2018;67 (2):226-236.
  • Panteli JT, Forkus BA, van Dessel N, Forbes NS. Genetically modified bacteria as a tool to detect microscopic solid tumor masses with triggered release of a recombinant biomarker. Integr Biol. 2015;7 (4):423-434.
  • Gardlik R, Fruehauf JH. Bacterial vectors and delivery systems in cancer therapy. IDrugs. 010;13(10):701-706.
Еще
Статья научная